Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prex Structured version   Visualization version   GIF version

Theorem bj-prex 37006
Description: Existence of unordered pairs proved from ax-bj-sn 36999 and ax-bj-bun 37003. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prex {𝐴, 𝐵} ∈ V

Proof of Theorem bj-prex
StepHypRef Expression
1 df-pr 4651 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 bj-snex 37001 . . 3 {𝐴} ∈ V
3 bj-snex 37001 . . 3 {𝐵} ∈ V
4 bj-unexg 37004 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V)
52, 3, 4mp2an 691 . 2 ({𝐴} ∪ {𝐵}) ∈ V
61, 5eqeltri 2840 1 {𝐴, 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-bj-sn 36999  ax-bj-bun 37003
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator