Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prex Structured version   Visualization version   GIF version

Theorem bj-prex 37063
Description: Existence of unordered pairs proved from ax-bj-sn 37056 and ax-bj-bun 37060. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prex {𝐴, 𝐵} ∈ V

Proof of Theorem bj-prex
StepHypRef Expression
1 df-pr 4609 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 bj-snex 37058 . . 3 {𝐴} ∈ V
3 bj-snex 37058 . . 3 {𝐵} ∈ V
4 bj-unexg 37061 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V)
52, 3, 4mp2an 692 . 2 ({𝐴} ∪ {𝐵}) ∈ V
61, 5eqeltri 2831 1 {𝐴, 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3464  cun 3929  {csn 4606  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-bj-sn 37056  ax-bj-bun 37060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator