| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-prex | Structured version Visualization version GIF version | ||
| Description: Existence of unordered pairs proved from ax-bj-sn 37021 and ax-bj-bun 37025. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-prex | ⊢ {𝐴, 𝐵} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4592 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 2 | bj-snex 37023 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | bj-snex 37023 | . . 3 ⊢ {𝐵} ∈ V | |
| 4 | bj-unexg 37026 | . . 3 ⊢ (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ V |
| 6 | 1, 5 | eqeltri 2824 | 1 ⊢ {𝐴, 𝐵} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-bj-sn 37021 ax-bj-bun 37025 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |