Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-prex Structured version   Visualization version   GIF version

Theorem bj-prex 37023
Description: Existence of unordered pairs proved from ax-bj-sn 37016 and ax-bj-bun 37020. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prex {𝐴, 𝐵} ∈ V

Proof of Theorem bj-prex
StepHypRef Expression
1 df-pr 4634 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 bj-snex 37018 . . 3 {𝐴} ∈ V
3 bj-snex 37018 . . 3 {𝐵} ∈ V
4 bj-unexg 37021 . . 3 (({𝐴} ∈ V ∧ {𝐵} ∈ V) → ({𝐴} ∪ {𝐵}) ∈ V)
52, 3, 4mp2an 692 . 2 ({𝐴} ∪ {𝐵}) ∈ V
61, 5eqeltri 2835 1 {𝐴, 𝐵} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  cun 3961  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-bj-sn 37016  ax-bj-bun 37020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-pr 4634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator