Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-minftyccb | Structured version Visualization version GIF version |
Description: The class -∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-minftyccb | ⊢ -∞ ∈ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ccinftyssccbar 34903 | . 2 ⊢ ℂ∞ ⊆ ℂ̅ | |
2 | df-bj-inftyexpi 34892 | . . . . 5 ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | |
3 | 2 | funmpt2 6372 | . . . 4 ⊢ Fun +∞ei |
4 | pire 25140 | . . . . . . . 8 ⊢ π ∈ ℝ | |
5 | 4 | renegcli 10975 | . . . . . . 7 ⊢ -π ∈ ℝ |
6 | 5 | rexri 10727 | . . . . . 6 ⊢ -π ∈ ℝ* |
7 | 4 | rexri 10727 | . . . . . 6 ⊢ π ∈ ℝ* |
8 | pipos 25142 | . . . . . . . . 9 ⊢ 0 < π | |
9 | 0re 10671 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
10 | 9, 4 | ltnegi 11212 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < -0) |
11 | 8, 10 | mpbi 233 | . . . . . . . 8 ⊢ -π < -0 |
12 | neg0 10960 | . . . . . . . 8 ⊢ -0 = 0 | |
13 | 11, 12 | breqtri 5055 | . . . . . . 7 ⊢ -π < 0 |
14 | 5, 9, 4 | lttri 10794 | . . . . . . 7 ⊢ ((-π < 0 ∧ 0 < π) → -π < π) |
15 | 13, 8, 14 | mp2an 692 | . . . . . 6 ⊢ -π < π |
16 | ubioc1 12822 | . . . . . 6 ⊢ ((-π ∈ ℝ* ∧ π ∈ ℝ* ∧ -π < π) → π ∈ (-π(,]π)) | |
17 | 6, 7, 15, 16 | mp3an 1459 | . . . . 5 ⊢ π ∈ (-π(,]π) |
18 | opex 5322 | . . . . . 6 ⊢ 〈𝑥, ℂ〉 ∈ V | |
19 | 18, 2 | dmmpti 6473 | . . . . 5 ⊢ dom +∞ei = (-π(,]π) |
20 | 17, 19 | eleqtrri 2852 | . . . 4 ⊢ π ∈ dom +∞ei |
21 | fvelrn 6833 | . . . 4 ⊢ ((Fun +∞ei ∧ π ∈ dom +∞ei) → (+∞ei‘π) ∈ ran +∞ei) | |
22 | 3, 20, 21 | mp2an 692 | . . 3 ⊢ (+∞ei‘π) ∈ ran +∞ei |
23 | df-bj-minfty 34909 | . . 3 ⊢ -∞ = (+∞ei‘π) | |
24 | df-bj-ccinfty 34897 | . . 3 ⊢ ℂ∞ = ran +∞ei | |
25 | 22, 23, 24 | 3eltr4i 2866 | . 2 ⊢ -∞ ∈ ℂ∞ |
26 | 1, 25 | sselii 3890 | 1 ⊢ -∞ ∈ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 〈cop 4526 class class class wbr 5030 dom cdm 5522 ran crn 5523 Fun wfun 6327 ‘cfv 6333 (class class class)co 7148 ℂcc 10563 0cc0 10565 ℝ*cxr 10702 < clt 10703 -cneg 10899 (,]cioc 12770 πcpi 15458 +∞eicinftyexpi 34891 ℂ∞cccinfty 34896 ℂ̅cccbar 34900 -∞cminfty 34908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-inf2 9127 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 ax-addf 10644 ax-mulf 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-of 7403 df-om 7578 df-1st 7691 df-2nd 7692 df-supp 7834 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-2o 8111 df-oadd 8114 df-er 8297 df-map 8416 df-pm 8417 df-ixp 8478 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-fsupp 8857 df-fi 8898 df-sup 8929 df-inf 8930 df-oi 8997 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-7 11732 df-8 11733 df-9 11734 df-n0 11925 df-z 12011 df-dec 12128 df-uz 12273 df-q 12379 df-rp 12421 df-xneg 12538 df-xadd 12539 df-xmul 12540 df-ioo 12773 df-ioc 12774 df-ico 12775 df-icc 12776 df-fz 12930 df-fzo 13073 df-fl 13201 df-seq 13409 df-exp 13470 df-fac 13674 df-bc 13703 df-hash 13731 df-shft 14464 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-limsup 14866 df-clim 14883 df-rlim 14884 df-sum 15081 df-ef 15459 df-sin 15461 df-cos 15462 df-pi 15464 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-sets 16538 df-ress 16539 df-plusg 16626 df-mulr 16627 df-starv 16628 df-sca 16629 df-vsca 16630 df-ip 16631 df-tset 16632 df-ple 16633 df-ds 16635 df-unif 16636 df-hom 16637 df-cco 16638 df-rest 16744 df-topn 16745 df-0g 16763 df-gsum 16764 df-topgen 16765 df-pt 16766 df-prds 16769 df-xrs 16823 df-qtop 16828 df-imas 16829 df-xps 16831 df-mre 16905 df-mrc 16906 df-acs 16908 df-mgm 17908 df-sgrp 17957 df-mnd 17968 df-submnd 18013 df-mulg 18282 df-cntz 18504 df-cmn 18965 df-psmet 20148 df-xmet 20149 df-met 20150 df-bl 20151 df-mopn 20152 df-fbas 20153 df-fg 20154 df-cnfld 20157 df-top 21584 df-topon 21601 df-topsp 21623 df-bases 21636 df-cld 21709 df-ntr 21710 df-cls 21711 df-nei 21788 df-lp 21826 df-perf 21827 df-cn 21917 df-cnp 21918 df-haus 22005 df-tx 22252 df-hmeo 22445 df-fil 22536 df-fm 22628 df-flim 22629 df-flf 22630 df-xms 23012 df-ms 23013 df-tms 23014 df-cncf 23569 df-limc 24555 df-dv 24556 df-bj-inftyexpi 34892 df-bj-ccinfty 34897 df-bj-ccbar 34901 df-bj-minfty 34909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |