| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssun2 | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4160 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 4140 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 4014 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Copyright terms: Public domain | W3C validator |