Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssun2 | Structured version Visualization version GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4107 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | uncom 4088 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtri 3958 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Copyright terms: Public domain | W3C validator |