Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt Structured version   Visualization version   GIF version

Theorem bj-ceqsalt 36869
Description: Remove from ceqsalt 3484 dependency on ax-ext 2702 (and on df-cleq 2722 and df-v 3452). Note: this is not doable with ceqsralt 3485 (or ceqsralv 3491), which uses eleq1 2817, but the same dependence removal is possible for ceqsalg 3486, ceqsal 3488, ceqsalv 3490, cgsexg 3495, cgsex2g 3496, cgsex4g 3497, ceqsex 3499, ceqsexv 3501, ceqsex2 3504, ceqsex2v 3505, ceqsex3v 3506, ceqsex4v 3507, ceqsex6v 3508, ceqsex8v 3509, gencbvex 3510 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3511, gencbval 3512, vtoclgft 3521 (it uses , whose justification nfcjust 2878 does not use ax-ext 2702) and several other vtocl* theorems (see for instance bj-vtoclg1f 36901). See also bj-ceqsaltv 36870. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-ceqsalt
StepHypRef Expression
1 elisset 2811 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1154 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 36867 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-clel 2804
This theorem is referenced by:  bj-ceqsalgALT  36873
  Copyright terms: Public domain W3C validator