| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version | ||
| Description: Remove from ceqsalt 3484 dependency on ax-ext 2702 (and on df-cleq 2722 and df-v 3452). Note: this is not doable with ceqsralt 3485 (or ceqsralv 3491), which uses eleq1 2817, but the same dependence removal is possible for ceqsalg 3486, ceqsal 3488, ceqsalv 3490, cgsexg 3495, cgsex2g 3496, cgsex4g 3497, ceqsex 3499, ceqsexv 3501, ceqsex2 3504, ceqsex2v 3505, ceqsex3v 3506, ceqsex4v 3507, ceqsex6v 3508, ceqsex8v 3509, gencbvex 3510 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3511, gencbval 3512, vtoclgft 3521 (it uses Ⅎ, whose justification nfcjust 2878 does not use ax-ext 2702) and several other vtocl* theorems (see for instance bj-vtoclg1f 36901). See also bj-ceqsaltv 36870. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
| 3 | bj-ceqsalt0 36867 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-clel 2804 |
| This theorem is referenced by: bj-ceqsalgALT 36873 |
| Copyright terms: Public domain | W3C validator |