![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version |
Description: Remove from ceqsalt 3523 dependency on ax-ext 2711 (and on df-cleq 2732 and df-v 3490). Note: this is not doable with ceqsralt 3524 (or ceqsralv 3531), which uses eleq1 2832, but the same dependence removal is possible for ceqsalg 3525, ceqsal 3527, ceqsalv 3529, cgsexg 3536, cgsex2g 3537, cgsex4g 3538, ceqsex 3540, ceqsexv 3542, ceqsex2 3547, ceqsex2v 3548, ceqsex3v 3549, ceqsex4v 3550, ceqsex6v 3551, ceqsex8v 3552, gencbvex 3553 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3554, gencbval 3555, vtoclgft 3564 (it uses Ⅎ, whose justification nfcjust 2894 does not use ax-ext 2711) and several other vtocl* theorems (see for instance bj-vtoclg1f 36876). See also bj-ceqsaltv 36845. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2826 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | 1 | 3anim3i 1154 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
3 | bj-ceqsalt0 36842 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: bj-ceqsalgALT 36848 |
Copyright terms: Public domain | W3C validator |