| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version | ||
| Description: Remove from ceqsalt 3470 dependency on ax-ext 2703 (and on df-cleq 2723 and df-v 3438). Note: this is not doable with ceqsralt 3471 (or ceqsralv 3477), which uses eleq1 2819, but the same dependence removal is possible for ceqsalg 3472, ceqsal 3474, ceqsalv 3476, cgsexg 3481, cgsex2g 3482, cgsex4g 3483, ceqsex 3485, ceqsexv 3486, ceqsex2 3489, ceqsex2v 3490, ceqsex3v 3491, ceqsex4v 3492, ceqsex6v 3493, ceqsex8v 3494, gencbvex 3495 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3496, gencbval 3497, vtoclgft 3505 (it uses Ⅎ, whose justification nfcjust 2880 does not use ax-ext 2703) and several other vtocl* theorems (see for instance bj-vtoclg1f 36962). See also bj-ceqsaltv 36931. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2813 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
| 3 | bj-ceqsalt0 36928 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: bj-ceqsalgALT 36934 |
| Copyright terms: Public domain | W3C validator |