| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version | ||
| Description: Remove from ceqsalt 3498 dependency on ax-ext 2706 (and on df-cleq 2726 and df-v 3465). Note: this is not doable with ceqsralt 3499 (or ceqsralv 3505), which uses eleq1 2821, but the same dependence removal is possible for ceqsalg 3500, ceqsal 3502, ceqsalv 3504, cgsexg 3509, cgsex2g 3510, cgsex4g 3511, ceqsex 3513, ceqsexv 3515, ceqsex2 3518, ceqsex2v 3519, ceqsex3v 3520, ceqsex4v 3521, ceqsex6v 3522, ceqsex8v 3523, gencbvex 3524 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3525, gencbval 3526, vtoclgft 3535 (it uses Ⅎ, whose justification nfcjust 2883 does not use ax-ext 2706) and several other vtocl* theorems (see for instance bj-vtoclg1f 36894). See also bj-ceqsaltv 36863. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2815 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | 1 | 3anim3i 1154 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
| 3 | bj-ceqsalt0 36860 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-clel 2808 |
| This theorem is referenced by: bj-ceqsalgALT 36866 |
| Copyright terms: Public domain | W3C validator |