Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt Structured version   Visualization version   GIF version

Theorem bj-ceqsalt 35766
Description: Remove from ceqsalt 3506 dependency on ax-ext 2704 (and on df-cleq 2725 and df-v 3477). Note: this is not doable with ceqsralt 3507 (or ceqsralv 3514), which uses eleq1 2822, but the same dependence removal is possible for ceqsalg 3508, ceqsal 3510, ceqsalv 3512, cgsexg 3519, cgsex2g 3520, cgsex4g 3521, ceqsex 3524, ceqsexv 3526, ceqsex2 3530, ceqsex2v 3531, ceqsex3v 3532, ceqsex4v 3533, ceqsex6v 3534, ceqsex8v 3535, gencbvex 3536 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3537, gencbval 3538, vtoclgft 3541 (it uses , whose justification nfcjust 2885 does not use ax-ext 2704) and several other vtocl* theorems (see for instance bj-vtoclg1f 35798). See also bj-ceqsaltv 35767. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-ceqsalt
StepHypRef Expression
1 elisset 2816 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1155 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 35764 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088  wal 1540   = wceq 1542  wex 1782  wnf 1786  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-clel 2811
This theorem is referenced by:  bj-ceqsalgALT  35770
  Copyright terms: Public domain W3C validator