Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt Structured version   Visualization version   GIF version

Theorem bj-ceqsalt 36930
Description: Remove from ceqsalt 3470 dependency on ax-ext 2703 (and on df-cleq 2723 and df-v 3438). Note: this is not doable with ceqsralt 3471 (or ceqsralv 3477), which uses eleq1 2819, but the same dependence removal is possible for ceqsalg 3472, ceqsal 3474, ceqsalv 3476, cgsexg 3481, cgsex2g 3482, cgsex4g 3483, ceqsex 3485, ceqsexv 3486, ceqsex2 3489, ceqsex2v 3490, ceqsex3v 3491, ceqsex4v 3492, ceqsex6v 3493, ceqsex8v 3494, gencbvex 3495 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3496, gencbval 3497, vtoclgft 3505 (it uses , whose justification nfcjust 2880 does not use ax-ext 2703) and several other vtocl* theorems (see for instance bj-vtoclg1f 36962). See also bj-ceqsaltv 36931. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-ceqsalt
StepHypRef Expression
1 elisset 2813 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1154 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 36928 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1539   = wceq 1541  wex 1780  wnf 1784  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-clel 2806
This theorem is referenced by:  bj-ceqsalgALT  36934
  Copyright terms: Public domain W3C validator