Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt Structured version   Visualization version   GIF version

Theorem bj-ceqsalt 36847
Description: Remove from ceqsalt 3478 dependency on ax-ext 2701 (and on df-cleq 2721 and df-v 3446). Note: this is not doable with ceqsralt 3479 (or ceqsralv 3485), which uses eleq1 2816, but the same dependence removal is possible for ceqsalg 3480, ceqsal 3482, ceqsalv 3484, cgsexg 3489, cgsex2g 3490, cgsex4g 3491, ceqsex 3493, ceqsexv 3495, ceqsex2 3498, ceqsex2v 3499, ceqsex3v 3500, ceqsex4v 3501, ceqsex6v 3502, ceqsex8v 3503, gencbvex 3504 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3505, gencbval 3506, vtoclgft 3515 (it uses , whose justification nfcjust 2877 does not use ax-ext 2701) and several other vtocl* theorems (see for instance bj-vtoclg1f 36879). See also bj-ceqsaltv 36848. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-ceqsalt
StepHypRef Expression
1 elisset 2810 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1154 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 36845 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  bj-ceqsalgALT  36851
  Copyright terms: Public domain W3C validator