Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version |
Description: Remove from ceqsalt 3452 dependency on ax-ext 2709 (and on df-cleq 2730 and df-v 3424). Note: this is not doable with ceqsralt 3453 (or ceqsralv 3459), which uses eleq1 2826, but the same dependence removal is possible for ceqsalg 3454, ceqsal 3456, ceqsalv 3457, cgsexg 3464, cgsex2g 3465, cgsex4g 3466, ceqsex 3468, ceqsexv 3469, ceqsex2 3472, ceqsex2v 3473, ceqsex3v 3474, ceqsex4v 3475, ceqsex6v 3476, ceqsex8v 3477, gencbvex 3478 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3479, gencbval 3480, vtoclgft 3482 (it uses Ⅎ, whose justification nfcjust 2887 does not use ax-ext 2709) and several other vtocl* theorems (see for instance bj-vtoclg1f 35030). See also bj-ceqsaltv 34999. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | 1 | 3anim3i 1152 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
3 | bj-ceqsalt0 34996 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: bj-ceqsalgALT 35002 |
Copyright terms: Public domain | W3C validator |