Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalt Structured version   Visualization version   GIF version

Theorem bj-ceqsalt 36880
Description: Remove from ceqsalt 3470 dependency on ax-ext 2701 (and on df-cleq 2721 and df-v 3438). Note: this is not doable with ceqsralt 3471 (or ceqsralv 3477), which uses eleq1 2816, but the same dependence removal is possible for ceqsalg 3472, ceqsal 3474, ceqsalv 3476, cgsexg 3481, cgsex2g 3482, cgsex4g 3483, ceqsex 3485, ceqsexv 3487, ceqsex2 3490, ceqsex2v 3491, ceqsex3v 3492, ceqsex4v 3493, ceqsex6v 3494, ceqsex8v 3495, gencbvex 3496 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3497, gencbval 3498, vtoclgft 3507 (it uses , whose justification nfcjust 2877 does not use ax-ext 2701) and several other vtocl* theorems (see for instance bj-vtoclg1f 36912). See also bj-ceqsaltv 36881. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem bj-ceqsalt
StepHypRef Expression
1 elisset 2810 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1154 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 36878 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-clel 2803
This theorem is referenced by:  bj-ceqsalgALT  36884
  Copyright terms: Public domain W3C validator