![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalt | Structured version Visualization version GIF version |
Description: Remove from ceqsalt 3512 dependency on ax-ext 2704 (and on df-cleq 2725 and df-v 3479). Note: this is not doable with ceqsralt 3513 (or ceqsralv 3519), which uses eleq1 2825, but the same dependence removal is possible for ceqsalg 3514, ceqsal 3516, ceqsalv 3518, cgsexg 3523, cgsex2g 3524, cgsex4g 3525, ceqsex 3527, ceqsexv 3529, ceqsex2 3534, ceqsex2v 3535, ceqsex3v 3536, ceqsex4v 3537, ceqsex6v 3538, ceqsex8v 3539, gencbvex 3540 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3541, gencbval 3542, vtoclgft 3551 (it uses Ⅎ, whose justification nfcjust 2887 does not use ax-ext 2704) and several other vtocl* theorems (see for instance bj-vtoclg1f 36861). See also bj-ceqsaltv 36830. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsalt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2819 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | 1 | 3anim3i 1152 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴)) |
3 | bj-ceqsalt0 36827 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1085 ∀wal 1533 = wceq 1535 ∃wex 1774 Ⅎwnf 1778 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-12 2173 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1087 df-tru 1538 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2711 df-clel 2812 |
This theorem is referenced by: bj-ceqsalgALT 36833 |
Copyright terms: Public domain | W3C validator |