Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 37033
Description: Alternate proof of pw0 4763. The proofs have a similar structure: pw0 4763 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37033 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4763 and biconditional for bj-pw0ALT 37033) to translate the property ss0b 4352 into the wanted result. To translate a biconditional into a class equality, pw0 4763 uses abbii 2796 (which yields an equality of class abstractions), while bj-pw0ALT 37033 uses eqriv 2726 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2796, through its closed form abbi 2794, is proved from eqrdv 2727, which is the deduction form of eqriv 2726. In the other direction, velpw 4556 and velsn 4593 are proved from the definitions of powerclass and singleton using elabg 3632, which is a version of abbii 2796 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4352 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4556 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4593 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2726 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-dif 3906  df-ss 3920  df-nul 4285  df-pw 4553  df-sn 4578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator