Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 35149
Description: Alternate proof of pw0 4742. The proofs have a similar structure: pw0 4742 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 35149 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4742 and biconditional for bj-pw0ALT 35149) to translate the property ss0b 4328 into the wanted result. To translate a biconditional into a class equality, pw0 4742 uses abbii 2809 (which yields an equality of class abstractions), while bj-pw0ALT 35149 uses eqriv 2735 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2809, through its closed form abbi1 2807, is proved from eqrdv 2736, which is the deduction form of eqriv 2735. In the other direction, velpw 4535 and velsn 4574 are proved from the definitions of powerclass and singleton using elabg 3600, which is a version of abbii 2809 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4328 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4535 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4574 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 302 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2735 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator