Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 34908
Description: Alternate proof of pw0 4711. The proofs have a similar structure: pw0 4711 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 34908 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4711 and biconditional for bj-pw0ALT 34908) to translate the property ss0b 4298 into the wanted result. To translate a biconditional into a class equality, pw0 4711 uses abbii 2801 (which yields an equality of class abstractions), while bj-pw0ALT 34908 uses eqriv 2733 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2801, through its closed form abbi1 2799, is proved from eqrdv 2734, which is the deduction form of eqriv 2733. In the other direction, velpw 4504 and velsn 4543 are proved from the definitions of powerclass and singleton using elabg 3574, which is a version of abbii 2801 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4298 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4504 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4543 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 306 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2733 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2112  wss 3853  c0 4223  𝒫 cpw 4499  {csn 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224  df-pw 4501  df-sn 4528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator