Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 35930
Description: Alternate proof of pw0 4816. The proofs have a similar structure: pw0 4816 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 35930 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4816 and biconditional for bj-pw0ALT 35930) to translate the property ss0b 4398 into the wanted result. To translate a biconditional into a class equality, pw0 4816 uses abbii 2803 (which yields an equality of class abstractions), while bj-pw0ALT 35930 uses eqriv 2730 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2803, through its closed form abbi 2801, is proved from eqrdv 2731, which is the deduction form of eqriv 2730. In the other direction, velpw 4608 and velsn 4645 are proved from the definitions of powerclass and singleton using elabg 3667, which is a version of abbii 2803 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4398 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4608 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4645 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2730 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4324  df-pw 4605  df-sn 4630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator