Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 37015
Description: Alternate proof of pw0 4837. The proofs have a similar structure: pw0 4837 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37015 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4837 and biconditional for bj-pw0ALT 37015) to translate the property ss0b 4424 into the wanted result. To translate a biconditional into a class equality, pw0 4837 uses abbii 2812 (which yields an equality of class abstractions), while bj-pw0ALT 37015 uses eqriv 2737 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2812, through its closed form abbi 2810, is proved from eqrdv 2738, which is the deduction form of eqriv 2737. In the other direction, velpw 4627 and velsn 4664 are proved from the definitions of powerclass and singleton using elabg 3690, which is a version of abbii 2812 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4424 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4627 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4664 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2737 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator