Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 37093
Description: Alternate proof of pw0 4761. The proofs have a similar structure: pw0 4761 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37093 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4761 and biconditional for bj-pw0ALT 37093) to translate the property ss0b 4348 into the wanted result. To translate a biconditional into a class equality, pw0 4761 uses abbii 2798 (which yields an equality of class abstractions), while bj-pw0ALT 37093 uses eqriv 2728 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2798, through its closed form abbi 2796, is proved from eqrdv 2729, which is the deduction form of eqriv 2728. In the other direction, velpw 4552 and velsn 4589 are proved from the definitions of powerclass and singleton using elabg 3627, which is a version of abbii 2798 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4348 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4552 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4589 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2728 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator