Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 36523
Description: Alternate proof of pw0 4812. The proofs have a similar structure: pw0 4812 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 36523 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4812 and biconditional for bj-pw0ALT 36523) to translate the property ss0b 4394 into the wanted result. To translate a biconditional into a class equality, pw0 4812 uses abbii 2798 (which yields an equality of class abstractions), while bj-pw0ALT 36523 uses eqriv 2725 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2798, through its closed form abbi 2796, is proved from eqrdv 2726, which is the deduction form of eqriv 2725. In the other direction, velpw 4604 and velsn 4641 are proved from the definitions of powerclass and singleton using elabg 3664, which is a version of abbii 2798 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4394 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4604 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4641 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2725 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wss 3945  c0 4319  𝒫 cpw 4599  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-dif 3948  df-in 3952  df-ss 3962  df-nul 4320  df-pw 4601  df-sn 4626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator