Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 37044
Description: Alternate proof of pw0 4779. The proofs have a similar structure: pw0 4779 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37044 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4779 and biconditional for bj-pw0ALT 37044) to translate the property ss0b 4367 into the wanted result. To translate a biconditional into a class equality, pw0 4779 uses abbii 2797 (which yields an equality of class abstractions), while bj-pw0ALT 37044 uses eqriv 2727 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2797, through its closed form abbi 2795, is proved from eqrdv 2728, which is the deduction form of eqriv 2727. In the other direction, velpw 4571 and velsn 4608 are proved from the definitions of powerclass and singleton using elabg 3646, which is a version of abbii 2797 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4367 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4571 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4608 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2727 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300  df-pw 4568  df-sn 4593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator