Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 35222
Description: Alternate proof of pw0 4745. The proofs have a similar structure: pw0 4745 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 35222 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4745 and biconditional for bj-pw0ALT 35222) to translate the property ss0b 4331 into the wanted result. To translate a biconditional into a class equality, pw0 4745 uses abbii 2808 (which yields an equality of class abstractions), while bj-pw0ALT 35222 uses eqriv 2735 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2808, through its closed form abbi1 2806, is proved from eqrdv 2736, which is the deduction form of eqriv 2735. In the other direction, velpw 4538 and velsn 4577 are proved from the definitions of powerclass and singleton using elabg 3607, which is a version of abbii 2808 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4331 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4538 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4577 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2735 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator