Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pw0ALT Structured version   Visualization version   GIF version

Theorem bj-pw0ALT 37067
Description: Alternate proof of pw0 4788. The proofs have a similar structure: pw0 4788 uses the definitions of powerclass and singleton as class abstractions, whereas bj-pw0ALT 37067 uses characterizations of their elements. Both proofs then use transitivity of a congruence relation (equality for pw0 4788 and biconditional for bj-pw0ALT 37067) to translate the property ss0b 4376 into the wanted result. To translate a biconditional into a class equality, pw0 4788 uses abbii 2802 (which yields an equality of class abstractions), while bj-pw0ALT 37067 uses eqriv 2732 (which requires a biconditional of membership of a given setvar variable). Note that abbii 2802, through its closed form abbi 2800, is proved from eqrdv 2733, which is the deduction form of eqriv 2732. In the other direction, velpw 4580 and velsn 4617 are proved from the definitions of powerclass and singleton using elabg 3655, which is a version of abbii 2802 suited for membership characterizations. (Contributed by BJ, 14-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-pw0ALT 𝒫 ∅ = {∅}

Proof of Theorem bj-pw0ALT
StepHypRef Expression
1 ss0b 4376 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
2 velpw 4580 . . 3 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ⊆ ∅)
3 velsn 4617 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
41, 2, 33bitr4i 303 . 2 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
54eqriv 2732 1 𝒫 ∅ = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-ss 3943  df-nul 4309  df-pw 4577  df-sn 4602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator