![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclgfALT | Structured version Visualization version GIF version |
Description: Alternate proof of vtoclgf 3550. Proof from vtoclgft 3533. (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-vtoclgfALT.1 | ⊢ Ⅎ𝑥𝐴 |
bj-vtoclgfALT.2 | ⊢ Ⅎ𝑥𝜓 |
bj-vtoclgfALT.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bj-vtoclgfALT.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-vtoclgfALT | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vtoclgfALT.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-vtoclgfALT.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) |
4 | bj-vtoclgfALT.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | ax-gen 1789 | . . 3 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
6 | bj-vtoclgfALT.4 | . . . 4 ⊢ 𝜑 | |
7 | 6 | ax-gen 1789 | . . 3 ⊢ ∀𝑥𝜑 |
8 | 5, 7 | pm3.2i 470 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) |
9 | vtoclgft 3533 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) | |
10 | 3, 8, 9 | mp3an12 1447 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-v 3468 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |