Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vtoclgfALT | Structured version Visualization version GIF version |
Description: Alternate proof of vtoclgf 3493. Proof from vtoclgft 3482. (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-vtoclgfALT.1 | ⊢ Ⅎ𝑥𝐴 |
bj-vtoclgfALT.2 | ⊢ Ⅎ𝑥𝜓 |
bj-vtoclgfALT.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bj-vtoclgfALT.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
bj-vtoclgfALT | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vtoclgfALT.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-vtoclgfALT.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) |
4 | bj-vtoclgfALT.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | ax-gen 1799 | . . 3 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
6 | bj-vtoclgfALT.4 | . . . 4 ⊢ 𝜑 | |
7 | 6 | ax-gen 1799 | . . 3 ⊢ ∀𝑥𝜑 |
8 | 5, 7 | pm3.2i 470 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) |
9 | vtoclgft 3482 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) | |
10 | 3, 8, 9 | mp3an12 1449 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |