Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgfALT Structured version   Visualization version   GIF version

Theorem bj-vtoclgfALT 37025
Description: Alternate proof of vtoclgf 3581. Proof from vtoclgft 3564. (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-vtoclgfALT.1 𝑥𝐴
bj-vtoclgfALT.2 𝑥𝜓
bj-vtoclgfALT.3 (𝑥 = 𝐴 → (𝜑𝜓))
bj-vtoclgfALT.4 𝜑
Assertion
Ref Expression
bj-vtoclgfALT (𝐴𝑉𝜓)

Proof of Theorem bj-vtoclgfALT
StepHypRef Expression
1 bj-vtoclgfALT.1 . . 3 𝑥𝐴
2 bj-vtoclgfALT.2 . . 3 𝑥𝜓
31, 2pm3.2i 470 . 2 (𝑥𝐴 ∧ Ⅎ𝑥𝜓)
4 bj-vtoclgfALT.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
54ax-gen 1793 . . 3 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
6 bj-vtoclgfALT.4 . . . 4 𝜑
76ax-gen 1793 . . 3 𝑥𝜑
85, 7pm3.2i 470 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑)
9 vtoclgft 3564 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
103, 8, 9mp3an12 1451 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator