![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn2g | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsn2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4648 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | snidg 4665 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) | |
3 | eleq1 2827 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵})) | |
4 | 2, 3 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
5 | 1, 4 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sn 4632 |
This theorem is referenced by: elsn2 4670 mptiniseg 6261 elsuc2g 6455 extmptsuppeq 8212 fzosplitsni 13814 1nsgtrivd 19205 limcco 25943 ply1termlem 26257 mptprop 32713 bj-elsn12g 37043 elpmapat 39747 stirlinglem8 46037 dirkercncflem2 46060 clnbgrel 47753 |
Copyright terms: Public domain | W3C validator |