MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsn2g Structured version   Visualization version   GIF version

Theorem elsn2g 4605
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 4586 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 snidg 4601 . . 3 (𝐵𝑉𝐵 ∈ {𝐵})
3 eleq1 2902 . . 3 (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵}))
42, 3syl5ibrcom 249 . 2 (𝐵𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
51, 4impbid2 228 1 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-sn 4570
This theorem is referenced by:  elsn2  4606  mptiniseg  6095  elsuc2g  6261  extmptsuppeq  7856  fzosplitsni  13151  1nsgtrivd  18328  limcco  24493  ply1termlem  24795  mptprop  30436  bj-elsn12g  34355  elpmapat  36902  stirlinglem8  42373  dirkercncflem2  42396
  Copyright terms: Public domain W3C validator