![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn2g | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsn2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4645 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | snidg 4662 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) | |
3 | eleq1 2821 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵})) | |
4 | 2, 3 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
5 | 1, 4 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sn 4629 |
This theorem is referenced by: elsn2 4667 mptiniseg 6238 elsuc2g 6433 extmptsuppeq 8172 fzosplitsni 13742 1nsgtrivd 19053 limcco 25409 ply1termlem 25716 mptprop 31915 bj-elsn12g 35936 elpmapat 38630 stirlinglem8 44787 dirkercncflem2 44810 |
Copyright terms: Public domain | W3C validator |