| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsn2g | Structured version Visualization version GIF version | ||
| Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| elsn2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4623 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | snidg 4641 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) | |
| 3 | eleq1 2823 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵})) | |
| 4 | 2, 3 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
| 5 | 1, 4 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sn 4607 |
| This theorem is referenced by: elsn2 4646 mptiniseg 6233 elsuc2g 6428 extmptsuppeq 8192 fzosplitsni 13799 1nsgtrivd 19162 limcco 25851 ply1termlem 26165 mptprop 32680 bj-elsn12g 37083 elpmapat 39788 stirlinglem8 46077 dirkercncflem2 46100 clnbgrel 47809 |
| Copyright terms: Public domain | W3C validator |