MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsn2g Structured version   Visualization version   GIF version

Theorem elsn2g 4686
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 4665 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 snidg 4682 . . 3 (𝐵𝑉𝐵 ∈ {𝐵})
3 eleq1 2832 . . 3 (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵}))
42, 3syl5ibrcom 247 . 2 (𝐵𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
51, 4impbid2 226 1 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sn 4649
This theorem is referenced by:  elsn2  4687  mptiniseg  6270  elsuc2g  6464  extmptsuppeq  8229  fzosplitsni  13828  1nsgtrivd  19214  limcco  25948  ply1termlem  26262  mptprop  32710  bj-elsn12g  37026  elpmapat  39721  stirlinglem8  46002  dirkercncflem2  46025  clnbgrel  47701
  Copyright terms: Public domain W3C validator