| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1832 rexim 3070 sspwb 5392 ssopab2bw 5490 ssopab2b 5492 wetrep 5612 imadif 6566 ssoprab2b 7418 eqoprab2bw 7419 tfinds2 7797 iiner 8716 fsetcdmex 8790 fiint 9216 fiintOLD 9217 dfac5lem5 10021 axpowndlem3 10493 uzind 12568 isprm5 16618 funcres2 17805 fthres2 17841 ipodrsima 18447 subrgdvds 20471 hausflim 23866 dvres2 25811 precsexlem11 28124 onscutlt 28170 uzsind 28298 axlowdimlem14 28900 atabs2i 32346 esum2dlem 34065 nn0prpw 36307 bj-hbext 36694 heibor1lem 37799 prter2 38870 dvelimf-o 38918 frege70 43916 frege72 43918 frege93 43939 frege110 43956 frege120 43966 pm11.71 44380 sbiota1 44417 |
| Copyright terms: Public domain | W3C validator |