| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1832 rexim 3071 sspwb 5412 ssopab2bw 5510 ssopab2b 5512 wetrep 5634 imadif 6603 ssoprab2b 7461 eqoprab2bw 7462 sucexeloniOLD 7789 tfinds2 7843 iiner 8765 fsetcdmex 8839 fiint 9284 fiintOLD 9285 dfac5lem5 10087 axpowndlem3 10559 uzind 12633 isprm5 16684 funcres2 17867 fthres2 17903 ipodrsima 18507 subrgdvds 20502 hausflim 23875 dvres2 25820 precsexlem11 28126 onscutlt 28172 uzsind 28300 axlowdimlem14 28889 atabs2i 32338 esum2dlem 34089 nn0prpw 36318 bj-hbext 36705 heibor1lem 37810 prter2 38881 dvelimf-o 38929 frege70 43929 frege72 43931 frege93 43952 frege110 43969 frege120 43979 pm11.71 44393 sbiota1 44430 |
| Copyright terms: Public domain | W3C validator |