| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1832 rexim 3077 sspwb 5424 ssopab2bw 5522 ssopab2b 5524 wetrep 5647 imadif 6620 ssoprab2b 7476 eqoprab2bw 7477 sucexeloniOLD 7804 suceloniOLD 7806 tfinds2 7859 iiner 8803 fsetcdmex 8877 fiint 9338 fiintOLD 9339 dfac5lem5 10141 axpowndlem3 10613 uzind 12685 isprm5 16726 funcres2 17911 fthres2 17947 ipodrsima 18551 subrgdvds 20546 hausflim 23919 dvres2 25865 precsexlem11 28171 onscutlt 28217 uzsind 28345 axlowdimlem14 28934 atabs2i 32383 esum2dlem 34123 nn0prpw 36341 bj-hbext 36728 heibor1lem 37833 prter2 38899 dvelimf-o 38947 frege70 43957 frege72 43959 frege93 43980 frege110 43997 frege120 44007 pm11.71 44421 sbiota1 44458 |
| Copyright terms: Public domain | W3C validator |