Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 290. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bir 242 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | syl6ib 250 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: aleximi 1835 sspwb 5359 ssopab2bw 5453 ssopab2b 5455 wetrep 5573 imadif 6502 ssoprab2b 7322 eqoprab2bw 7323 suceloni 7635 tfinds2 7685 iiner 8536 fsetcdmex 8609 fiint 9021 dfac5lem5 9814 axpowndlem3 10286 uzind 12342 isprm5 16340 funcres2 17529 fthres2 17564 ipodrsima 18174 subrgdvds 19953 hausflim 23040 dvres2 24981 axlowdimlem14 27226 atabs2i 30665 esum2dlem 31960 nn0prpw 34439 bj-hbext 34819 heibor1lem 35894 prter2 36822 dvelimf-o 36870 frege70 41430 frege72 41432 frege93 41453 frege110 41470 frege120 41480 pm11.71 41904 sbiota1 41941 |
Copyright terms: Public domain | W3C validator |