| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1832 rexim 3070 sspwb 5409 ssopab2bw 5507 ssopab2b 5509 wetrep 5631 imadif 6600 ssoprab2b 7458 eqoprab2bw 7459 sucexeloniOLD 7786 tfinds2 7840 iiner 8762 fsetcdmex 8836 fiint 9277 fiintOLD 9278 dfac5lem5 10080 axpowndlem3 10552 uzind 12626 isprm5 16677 funcres2 17860 fthres2 17896 ipodrsima 18500 subrgdvds 20495 hausflim 23868 dvres2 25813 precsexlem11 28119 onscutlt 28165 uzsind 28293 axlowdimlem14 28882 atabs2i 32331 esum2dlem 34082 nn0prpw 36311 bj-hbext 36698 heibor1lem 37803 prter2 38874 dvelimf-o 38922 frege70 43922 frege72 43924 frege93 43945 frege110 43962 frege120 43972 pm11.71 44386 sbiota1 44423 |
| Copyright terms: Public domain | W3C validator |