![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 290. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrrid 242 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | imbitrdi 250 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: aleximi 1834 rexim 3087 sspwb 5449 ssopab2bw 5547 ssopab2b 5549 wetrep 5669 imadif 6632 ssoprab2b 7477 eqoprab2bw 7478 sucexeloniOLD 7797 suceloniOLD 7799 tfinds2 7852 iiner 8782 fsetcdmex 8856 fiint 9323 dfac5lem5 10121 axpowndlem3 10593 uzind 12653 isprm5 16643 funcres2 17847 fthres2 17882 ipodrsima 18493 subrgdvds 20332 hausflim 23484 dvres2 25428 precsexlem11 27660 axlowdimlem14 28210 atabs2i 31650 esum2dlem 33085 nn0prpw 35203 bj-hbext 35583 heibor1lem 36672 prter2 37746 dvelimf-o 37794 frege70 42674 frege72 42676 frege93 42697 frege110 42714 frege120 42724 pm11.71 43146 sbiota1 43183 |
Copyright terms: Public domain | W3C validator |