Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bir 242 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | syl6ib 250 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: aleximi 1834 rexim 3172 sspwb 5365 ssopab2bw 5460 ssopab2b 5462 wetrep 5582 imadif 6518 ssoprab2b 7344 eqoprab2bw 7345 sucexeloni 7658 suceloniOLD 7660 tfinds2 7710 iiner 8578 fsetcdmex 8651 fiint 9091 dfac5lem5 9883 axpowndlem3 10355 uzind 12412 isprm5 16412 funcres2 17613 fthres2 17648 ipodrsima 18259 subrgdvds 20038 hausflim 23132 dvres2 25076 axlowdimlem14 27323 atabs2i 30764 esum2dlem 32060 nn0prpw 34512 bj-hbext 34892 heibor1lem 35967 prter2 36895 dvelimf-o 36943 frege70 41541 frege72 41543 frege93 41564 frege110 41581 frege120 41591 pm11.71 42015 sbiota1 42052 |
Copyright terms: Public domain | W3C validator |