| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1832 rexim 3070 sspwb 5404 ssopab2bw 5502 ssopab2b 5504 wetrep 5624 imadif 6584 ssoprab2b 7438 eqoprab2bw 7439 sucexeloniOLD 7766 tfinds2 7820 iiner 8739 fsetcdmex 8813 fiint 9253 fiintOLD 9254 dfac5lem5 10056 axpowndlem3 10528 uzind 12602 isprm5 16653 funcres2 17840 fthres2 17876 ipodrsima 18482 subrgdvds 20506 hausflim 23901 dvres2 25846 precsexlem11 28159 onscutlt 28205 uzsind 28333 axlowdimlem14 28935 atabs2i 32381 esum2dlem 34075 nn0prpw 36304 bj-hbext 36691 heibor1lem 37796 prter2 38867 dvelimf-o 38915 frege70 43915 frege72 43917 frege93 43938 frege110 43955 frege120 43965 pm11.71 44379 sbiota1 44416 |
| Copyright terms: Public domain | W3C validator |