![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 283. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5bir 235 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | syl6ib 243 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: aleximi 1927 sspwb 5108 ssopab2b 5198 wetrep 5305 imadif 6184 ssoprab2b 6946 suceloni 7247 tfinds2 7297 iiner 8057 fiint 8479 dfac5lem5 9236 axpowndlem3 9709 uzind 11759 isprm5 15752 funcres2 16872 fthres2 16906 ipodrsima 17480 subrgdvds 19112 hausflim 22113 dvres2 24017 axlowdimlem14 26192 atabs2i 29786 esum2dlem 30670 nn0prpw 32830 bj-hbext 33206 heibor1lem 34095 prter2 34902 dvelimf-o 34950 frege70 39009 frege72 39011 frege93 39032 frege110 39049 frege120 39059 pm11.71 39379 sbiota1 39416 |
Copyright terms: Public domain | W3C validator |