| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version | ||
| Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| 3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
| 3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
| Ref | Expression |
|---|---|
| 3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
| 2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: aleximi 1833 rexim 3073 sspwb 5388 ssopab2bw 5485 ssopab2b 5487 wetrep 5607 imadif 6565 ssoprab2b 7415 eqoprab2bw 7416 tfinds2 7794 iiner 8713 fsetcdmex 8787 fiint 9211 dfac5lem5 10018 axpowndlem3 10490 uzind 12565 isprm5 16618 funcres2 17805 fthres2 17841 ipodrsima 18447 subrgdvds 20501 hausflim 23896 dvres2 25840 precsexlem11 28155 onscutlt 28201 uzsind 28329 axlowdimlem14 28933 atabs2i 32382 esum2dlem 34105 nn0prpw 36367 bj-hbext 36754 heibor1lem 37848 prter2 38979 dvelimf-o 39027 frege70 44025 frege72 44027 frege93 44048 frege110 44065 frege120 44075 pm11.71 44489 sbiota1 44526 |
| Copyright terms: Public domain | W3C validator |