![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: aleximi 1829 rexim 3085 sspwb 5460 ssopab2bw 5557 ssopab2b 5559 wetrep 5682 imadif 6652 ssoprab2b 7502 eqoprab2bw 7503 sucexeloniOLD 7830 suceloniOLD 7832 tfinds2 7885 iiner 8828 fsetcdmex 8902 fiint 9364 fiintOLD 9365 dfac5lem5 10165 axpowndlem3 10637 uzind 12708 isprm5 16741 funcres2 17949 fthres2 17986 ipodrsima 18599 subrgdvds 20603 hausflim 24005 dvres2 25962 precsexlem11 28256 uzsind 28406 axlowdimlem14 28985 atabs2i 32431 esum2dlem 34073 nn0prpw 36306 bj-hbext 36693 heibor1lem 37796 prter2 38863 dvelimf-o 38911 frege70 43923 frege72 43925 frege93 43946 frege110 43963 frege120 43973 pm11.71 44393 sbiota1 44430 |
Copyright terms: Public domain | W3C validator |