![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imtr3g | Structured version Visualization version GIF version |
Description: More general version of 3imtr3i 291. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr3g.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3imtr3g.2 | ⊢ (𝜓 ↔ 𝜃) |
3imtr3g.3 | ⊢ (𝜒 ↔ 𝜏) |
Ref | Expression |
---|---|
3imtr3g | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3g.2 | . . 3 ⊢ (𝜓 ↔ 𝜃) | |
2 | 3imtr3g.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | biimtrrid 243 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) |
4 | 3imtr3g.3 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
5 | 3, 4 | imbitrdi 251 | 1 ⊢ (𝜑 → (𝜃 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: aleximi 1830 rexim 3093 sspwb 5469 ssopab2bw 5566 ssopab2b 5568 wetrep 5693 imadif 6662 ssoprab2b 7519 eqoprab2bw 7520 sucexeloniOLD 7846 suceloniOLD 7848 tfinds2 7901 iiner 8847 fsetcdmex 8921 fiint 9394 fiintOLD 9395 dfac5lem5 10196 axpowndlem3 10668 uzind 12735 isprm5 16754 funcres2 17962 fthres2 17999 ipodrsima 18611 subrgdvds 20614 hausflim 24010 dvres2 25967 precsexlem11 28259 uzsind 28409 axlowdimlem14 28988 atabs2i 32434 esum2dlem 34056 nn0prpw 36289 bj-hbext 36676 heibor1lem 37769 prter2 38837 dvelimf-o 38885 frege70 43895 frege72 43897 frege93 43918 frege110 43935 frege120 43945 pm11.71 44366 sbiota1 44403 |
Copyright terms: Public domain | W3C validator |