| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrab | Structured version Visualization version GIF version | ||
| Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
| Ref | Expression |
|---|---|
| inrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | 1, 2 | ineq12i 4198 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 4 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
| 5 | inab 4289 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
| 6 | anandi 676 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 7 | 6 | abbii 2803 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
| 8 | 5, 7 | eqtr4i 2762 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
| 9 | 4, 8 | eqtr4i 2762 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 10 | 3, 9 | eqtr4i 2762 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 |
| This theorem is referenced by: rabnc 4371 ixxin 13384 hashbclem 14475 phiprmpw 16800 submacs 18810 ablfacrp 20054 dfrhm2 20439 ordtbaslem 23131 ordtbas2 23134 ordtopn3 23139 ordtcld3 23142 ordthauslem 23326 pthaus 23581 xkohaus 23596 tsmsfbas 24071 minveclem3b 25385 shftmbl 25496 mumul 27148 ppiub 27172 lgsquadlem2 27349 umgrislfupgrlem 29106 numedglnl 29128 clwwlknondisj 30097 frcond3 30255 numclwwlk3lem2 30370 xppreima 32628 xpinpreima 33942 xpinpreima2 33943 measvuni 34250 subfacp1lem6 35212 satfv1 35390 cnambfre 37697 itg2addnclem2 37701 ftc1anclem6 37727 refsymrels2 38588 dfeqvrels2 38611 refrelsredund4 38655 grpods 42212 anrabdioph 42770 naddov4 43374 undisjrab 44297 smfaddlem2 46760 smfmullem4 46790 |
| Copyright terms: Public domain | W3C validator |