![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrab | Structured version Visualization version GIF version |
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
Ref | Expression |
---|---|
inrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3425 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | df-rab 3425 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
3 | 1, 2 | ineq12i 4203 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | df-rab 3425 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
5 | inab 4292 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
6 | anandi 673 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
7 | 6 | abbii 2794 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
8 | 5, 7 | eqtr4i 2755 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
9 | 4, 8 | eqtr4i 2755 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
10 | 3, 9 | eqtr4i 2755 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 {crab 3424 ∩ cin 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3948 |
This theorem is referenced by: rabnc 4380 ixxin 13339 hashbclem 14409 phiprmpw 16710 submacs 18744 ablfacrp 19980 dfrhm2 20368 ordtbaslem 23016 ordtbas2 23019 ordtopn3 23024 ordtcld3 23027 ordthauslem 23211 pthaus 23466 xkohaus 23481 tsmsfbas 23956 minveclem3b 25280 shftmbl 25391 mumul 27032 ppiub 27056 lgsquadlem2 27233 umgrislfupgrlem 28854 numedglnl 28876 clwwlknondisj 29836 frcond3 29994 numclwwlk3lem2 30109 xppreima 32343 xpinpreima 33378 xpinpreima2 33379 measvuni 33704 subfacp1lem6 34667 satfv1 34845 cnambfre 37030 itg2addnclem2 37034 ftc1anclem6 37060 refsymrels2 37929 dfeqvrels2 37952 refrelsredund4 37996 anrabdioph 42032 naddov4 42647 undisjrab 43579 smfaddlem2 45990 smfmullem4 46020 |
Copyright terms: Public domain | W3C validator |