MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab Structured version   Visualization version   GIF version

Theorem inrab 4266
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
inrab ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem inrab
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3396 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2ineq12i 4168 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 3396 . . 3 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
5 inab 4259 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓))}
6 anandi 676 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓)))
76abbii 2798 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓))}
85, 7eqtr4i 2757 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
94, 8eqtr4i 2757 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)})
103, 9eqtr4i 2757 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cin 3901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909
This theorem is referenced by:  rabnc  4341  ixxin  13262  hashbclem  14359  phiprmpw  16687  submacs  18735  ablfacrp  19981  dfrhm2  20393  ordtbaslem  23104  ordtbas2  23107  ordtopn3  23112  ordtcld3  23115  ordthauslem  23299  pthaus  23554  xkohaus  23569  tsmsfbas  24044  minveclem3b  25356  shftmbl  25467  mumul  27119  ppiub  27143  lgsquadlem2  27320  umgrislfupgrlem  29101  numedglnl  29123  clwwlknondisj  30089  frcond3  30247  numclwwlk3lem2  30362  xppreima  32625  xpinpreima  33917  xpinpreima2  33918  measvuni  34225  subfacp1lem6  35227  satfv1  35405  cnambfre  37714  itg2addnclem2  37718  ftc1anclem6  37744  refsymrels2  38608  dfeqvrels2  38631  refrelsredund4  38675  grpods  42233  anrabdioph  42819  naddov4  43422  undisjrab  44345  smfaddlem2  46808  smfmullem4  46838
  Copyright terms: Public domain W3C validator