| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrab | Structured version Visualization version GIF version | ||
| Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
| Ref | Expression |
|---|---|
| inrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | 1, 2 | ineq12i 4168 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 4 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
| 5 | inab 4259 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
| 6 | anandi 676 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 7 | 6 | abbii 2798 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
| 8 | 5, 7 | eqtr4i 2757 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
| 9 | 4, 8 | eqtr4i 2757 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
| 10 | 3, 9 | eqtr4i 2757 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 |
| This theorem is referenced by: rabnc 4341 ixxin 13262 hashbclem 14359 phiprmpw 16687 submacs 18735 ablfacrp 19981 dfrhm2 20393 ordtbaslem 23104 ordtbas2 23107 ordtopn3 23112 ordtcld3 23115 ordthauslem 23299 pthaus 23554 xkohaus 23569 tsmsfbas 24044 minveclem3b 25356 shftmbl 25467 mumul 27119 ppiub 27143 lgsquadlem2 27320 umgrislfupgrlem 29101 numedglnl 29123 clwwlknondisj 30089 frcond3 30247 numclwwlk3lem2 30362 xppreima 32625 xpinpreima 33917 xpinpreima2 33918 measvuni 34225 subfacp1lem6 35227 satfv1 35405 cnambfre 37714 itg2addnclem2 37718 ftc1anclem6 37744 refsymrels2 38608 dfeqvrels2 38631 refrelsredund4 38675 grpods 42233 anrabdioph 42819 naddov4 43422 undisjrab 44345 smfaddlem2 46808 smfmullem4 46838 |
| Copyright terms: Public domain | W3C validator |