![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inrab | Structured version Visualization version GIF version |
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
Ref | Expression |
---|---|
inrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3433 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | df-rab 3433 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
3 | 1, 2 | ineq12i 4225 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | df-rab 3433 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} | |
5 | inab 4314 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} | |
6 | anandi 676 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
7 | 6 | abbii 2806 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
8 | 5, 7 | eqtr4i 2765 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))} |
9 | 4, 8 | eqtr4i 2765 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
10 | 3, 9 | eqtr4i 2765 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 {crab 3432 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 |
This theorem is referenced by: rabnc 4396 ixxin 13400 hashbclem 14487 phiprmpw 16809 submacs 18852 ablfacrp 20100 dfrhm2 20490 ordtbaslem 23211 ordtbas2 23214 ordtopn3 23219 ordtcld3 23222 ordthauslem 23406 pthaus 23661 xkohaus 23676 tsmsfbas 24151 minveclem3b 25475 shftmbl 25586 mumul 27238 ppiub 27262 lgsquadlem2 27439 umgrislfupgrlem 29153 numedglnl 29175 clwwlknondisj 30139 frcond3 30297 numclwwlk3lem2 30412 xppreima 32661 xpinpreima 33866 xpinpreima2 33867 measvuni 34194 subfacp1lem6 35169 satfv1 35347 cnambfre 37654 itg2addnclem2 37658 ftc1anclem6 37684 refsymrels2 38546 dfeqvrels2 38569 refrelsredund4 38613 grpods 42175 anrabdioph 42767 naddov4 43372 undisjrab 44301 smfaddlem2 46719 smfmullem4 46749 |
Copyright terms: Public domain | W3C validator |