MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab Structured version   Visualization version   GIF version

Theorem inrab 4296
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
Assertion
Ref Expression
inrab ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem inrab
StepHypRef Expression
1 df-rab 3421 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3421 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2ineq12i 4198 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 3421 . . 3 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
5 inab 4289 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓))}
6 anandi 676 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓)))
76abbii 2803 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ (𝑥𝐴𝜓))}
85, 7eqtr4i 2762 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
94, 8eqtr4i 2762 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥 ∣ (𝑥𝐴𝜓)})
103, 9eqtr4i 2762 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2714  {crab 3420  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-in 3938
This theorem is referenced by:  rabnc  4371  ixxin  13384  hashbclem  14475  phiprmpw  16800  submacs  18810  ablfacrp  20054  dfrhm2  20439  ordtbaslem  23131  ordtbas2  23134  ordtopn3  23139  ordtcld3  23142  ordthauslem  23326  pthaus  23581  xkohaus  23596  tsmsfbas  24071  minveclem3b  25385  shftmbl  25496  mumul  27148  ppiub  27172  lgsquadlem2  27349  umgrislfupgrlem  29106  numedglnl  29128  clwwlknondisj  30097  frcond3  30255  numclwwlk3lem2  30370  xppreima  32628  xpinpreima  33942  xpinpreima2  33943  measvuni  34250  subfacp1lem6  35212  satfv1  35390  cnambfre  37697  itg2addnclem2  37701  ftc1anclem6  37727  refsymrels2  38588  dfeqvrels2  38611  refrelsredund4  38655  grpods  42212  anrabdioph  42770  naddov4  43374  undisjrab  44297  smfaddlem2  46760  smfmullem4  46790
  Copyright terms: Public domain W3C validator