Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inidm | Structured version Visualization version GIF version |
Description: Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
inidm | ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 564 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | ineqri 4135 | 1 ⊢ (𝐴 ∩ 𝐴) = 𝐴 |
Copyright terms: Public domain | W3C validator |