| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inrab3 | Structured version Visualization version GIF version | ||
| Description: Generalization of dfrab3ss 4323, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.) |
| Ref | Expression |
|---|---|
| bj-inrab3 | ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4319 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | 1 | ineq2i 4217 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
| 3 | dfrab3 4319 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 4 | 3 | ineq2i 4217 | . . 3 ⊢ (𝐵 ∩ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐵 ∩ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
| 5 | incom 4209 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = (𝐵 ∩ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 6 | in12 4229 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) = (𝐵 ∩ (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
| 7 | 4, 5, 6 | 3eqtr4i 2775 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
| 8 | 2, 7 | eqtr4i 2768 | 1 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2714 {crab 3436 ∩ cin 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |