Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inrab3 | Structured version Visualization version GIF version |
Description: Generalization of dfrab3ss 4243, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.) |
Ref | Expression |
---|---|
bj-inrab3 | ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4240 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
2 | 1 | ineq2i 4140 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
3 | dfrab3 4240 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
4 | 3 | ineq2i 4140 | . . 3 ⊢ (𝐵 ∩ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐵 ∩ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
5 | incom 4131 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = (𝐵 ∩ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
6 | in12 4151 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) = (𝐵 ∩ (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
7 | 4, 5, 6 | 3eqtr4i 2776 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
8 | 2, 7 | eqtr4i 2769 | 1 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |