| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 4173 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: in4 4193 inindir 4195 indif2 4240 difun1 4258 dfrab3ss 4282 undif1 4435 difdifdir 4451 dfif3 4499 dfif5 4501 disjpr2 4673 disjprsn 4674 disjtp2 4676 intunsn 4947 rint0 4948 riin0 5041 csbres 5942 res0 5943 resres 5952 resundi 5953 resindi 5955 inres 5957 resiun2 5960 resopab 5994 dffr3 6059 dfse2 6060 dminxp 6141 imainrect 6142 cnvrescnv 6156 resdmres 6193 resdifdi 6197 dfpo2 6257 snres0 6259 dfpred2 6272 predidm 6287 funimacnv 6581 fresaun 6713 fresaunres2 6714 tfrlem10 8332 sbthlem5 9032 infssuni 9273 dfsup2 9371 en3lplem2 9542 wemapwe 9626 epfrs 9660 r0weon 9941 infxpenlem 9942 kmlem11 10090 ackbij1lem1 10148 ackbij1lem2 10149 axdc3lem4 10382 canthwelem 10579 dmaddpi 10819 dmmulpi 10820 ssxr 11219 dmhashres 14282 fz1isolem 14402 f1oun2prg 14859 fsumiun 15763 sadeq 16418 bitsres 16419 smuval2 16428 smumul 16439 ressinbas 17191 lubdm 18290 glbdm 18303 sylow2a 19533 lsmmod2 19590 lsmdisj2r 19599 ablfac1eu 19989 pjdm 21649 ressmplbas2 21967 opsrtoslem1 21995 rintopn 22829 ordtrest2 23124 cmpsublem 23319 kgentopon 23458 hausdiag 23565 uzrest 23817 ufprim 23829 trust 24150 metnrmlem3 24783 clsocv 25183 ismbl 25460 unmbl 25471 volinun 25480 voliunlem1 25484 ovolioo 25502 itg2cnlem2 25696 ellimc2 25811 limcflf 25815 lhop1lem 25951 lgsquadlem3 27326 rplogsum 27471 noextend 27611 noextendseq 27612 noetasuplem2 27679 noetainflem2 27683 madeval2 27798 onsiso 28209 bdayn0sf1o 28299 umgrislfupgrlem 29102 spthispth 29704 cyclnumvtx 29780 0pth 30104 1pthdlem2 30115 frgrncvvdeqlem3 30280 ex-in 30404 chdmj3i 31462 chdmj4i 31463 chjassi 31465 pjoml2i 31564 pjoml3i 31565 cmcmlem 31570 cmcm2i 31572 cmbr3i 31579 fh3i 31602 fh4i 31603 osumcor2i 31623 mayetes3i 31708 mdslmd3i 32311 mdexchi 32314 atabsi 32380 dmdbr5ati 32401 inin 32495 uniin2 32531 of0r 32652 dfprm3 33517 ordtrest2NEW 33906 hasheuni 34068 carsgclctunlem1 34301 eulerpartgbij 34356 fiblem 34382 cvmscld 35253 sate0 35395 msrid 35525 elrn3 35742 bj-inrab3 36910 poimirlem15 37622 mblfinlem2 37645 ftc1anclem6 37685 dmxrncnvep 38355 xrnres2 38382 redundss3 38612 refrelsredund4 38616 pol0N 39896 readvrec2 42342 mapfzcons2 42700 diophrw 42740 conrel2d 43646 iunrelexp0 43684 hashnzfz 44302 wfaxpow 44980 disjinfi 45179 fourierdlem80 46177 sge0resplit 46397 sge0split 46400 caragenuncllem 46503 iscnrm3rlem1 48921 |
| Copyright terms: Public domain | W3C validator |