| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 4194 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: in4 4214 inindir 4216 indif2 4261 difun1 4279 dfrab3ss 4303 undif1 4456 difdifdir 4472 dfif3 4520 dfif5 4522 disjpr2 4694 disjprsn 4695 disjtp2 4697 intunsn 4968 rint0 4969 riin0 5063 csbres 5974 res0 5975 resres 5984 resundi 5985 resindi 5987 inres 5989 resiun2 5992 resopab 6026 dffr3 6091 dfse2 6092 dminxp 6174 imainrect 6175 cnvrescnv 6189 resdmres 6226 resdifdi 6230 dfpo2 6290 snres0 6292 dfpred2 6305 predidm 6320 funimacnv 6622 fresaun 6754 fresaunres2 6755 wfrlem13OLD 8340 tfrlem10 8406 sbthlem5 9106 infssuni 9363 dfsup2 9461 en3lplem2 9632 wemapwe 9716 epfrs 9750 r0weon 10031 infxpenlem 10032 kmlem11 10180 ackbij1lem1 10238 ackbij1lem2 10239 axdc3lem4 10472 canthwelem 10669 dmaddpi 10909 dmmulpi 10910 ssxr 11309 dmhashres 14364 fz1isolem 14484 f1oun2prg 14941 fsumiun 15842 sadeq 16496 bitsres 16497 smuval2 16506 smumul 16517 ressinbas 17271 lubdm 18366 glbdm 18379 sylow2a 19605 lsmmod2 19662 lsmdisj2r 19671 ablfac1eu 20061 pjdm 21672 ressmplbas2 21990 opsrtoslem1 22018 rintopn 22852 ordtrest2 23147 cmpsublem 23342 kgentopon 23481 hausdiag 23588 uzrest 23840 ufprim 23852 trust 24173 metnrmlem3 24806 clsocv 25207 ismbl 25484 unmbl 25495 volinun 25504 voliunlem1 25508 ovolioo 25526 itg2cnlem2 25720 ellimc2 25835 limcflf 25839 lhop1lem 25975 lgsquadlem3 27350 rplogsum 27495 noextend 27635 noextendseq 27636 noetasuplem2 27703 noetainflem2 27707 madeval2 27818 onsiso 28226 bdayn0sf1o 28316 umgrislfupgrlem 29106 spthispth 29711 cyclnumvtx 29787 0pth 30111 1pthdlem2 30122 frgrncvvdeqlem3 30287 ex-in 30411 chdmj3i 31469 chdmj4i 31470 chjassi 31472 pjoml2i 31571 pjoml3i 31572 cmcmlem 31577 cmcm2i 31579 cmbr3i 31586 fh3i 31609 fh4i 31610 osumcor2i 31630 mayetes3i 31715 mdslmd3i 32318 mdexchi 32321 atabsi 32387 dmdbr5ati 32408 inin 32502 uniin2 32538 of0r 32661 dfprm3 33573 ordtrest2NEW 33959 hasheuni 34121 carsgclctunlem1 34354 eulerpartgbij 34409 fiblem 34435 cvmscld 35300 sate0 35442 msrid 35572 elrn3 35784 bj-inrab3 36952 poimirlem15 37664 mblfinlem2 37687 ftc1anclem6 37727 xrnres2 38426 redundss3 38651 refrelsredund4 38655 pol0N 39933 readvrec2 42379 mapfzcons2 42717 diophrw 42757 conrel2d 43663 iunrelexp0 43701 hashnzfz 44319 wfaxpow 44997 disjinfi 45196 fourierdlem80 46195 sge0resplit 46415 sge0split 46418 caragenuncllem 46521 iscnrm3rlem1 48894 |
| Copyright terms: Public domain | W3C validator |