![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq2 4221 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∩ cin 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-in 3969 |
This theorem is referenced by: in4 4241 inindir 4243 indif2 4286 difun1 4304 dfrab3ss 4328 undif1 4481 difdifdir 4497 dfif3 4544 dfif5 4546 disjpr2 4717 disjprsn 4718 disjtp2 4720 intunsn 4991 rint0 4992 riin0 5086 csbres 6002 res0 6003 resres 6012 resundi 6013 resindi 6015 inres 6017 resiun2 6020 resopab 6053 dffr3 6119 dfse2 6120 dminxp 6201 imainrect 6202 cnvrescnv 6216 resdmres 6253 resdifdi 6257 dfpo2 6317 snres0 6319 dfpred2 6332 predidm 6348 funimacnv 6648 fresaun 6779 fresaunres2 6780 wfrlem13OLD 8359 tfrlem10 8425 sbthlem5 9125 infssuni 9383 dfsup2 9481 en3lplem2 9650 wemapwe 9734 epfrs 9768 r0weon 10049 infxpenlem 10050 kmlem11 10198 ackbij1lem1 10256 ackbij1lem2 10257 axdc3lem4 10490 canthwelem 10687 dmaddpi 10927 dmmulpi 10928 ssxr 11327 dmhashres 14376 fz1isolem 14496 f1oun2prg 14952 fsumiun 15853 sadeq 16505 bitsres 16506 smuval2 16515 smumul 16526 ressinbas 17290 lubdm 18408 glbdm 18421 sylow2a 19651 lsmmod2 19708 lsmdisj2r 19717 ablfac1eu 20107 pjdm 21744 ressmplbas2 22062 opsrtoslem1 22096 rintopn 22930 ordtrest2 23227 cmpsublem 23422 kgentopon 23561 hausdiag 23668 uzrest 23920 ufprim 23932 trust 24253 metnrmlem3 24896 clsocv 25297 ismbl 25574 unmbl 25585 volinun 25594 voliunlem1 25598 ovolioo 25616 itg2cnlem2 25811 ellimc2 25926 limcflf 25930 lhop1lem 26066 lgsquadlem3 27440 rplogsum 27585 noextend 27725 noextendseq 27726 noetasuplem2 27793 noetainflem2 27797 madeval2 27906 umgrislfupgrlem 29153 spthispth 29758 0pth 30153 1pthdlem2 30164 frgrncvvdeqlem3 30329 ex-in 30453 chdmj3i 31511 chdmj4i 31512 chjassi 31514 pjoml2i 31613 pjoml3i 31614 cmcmlem 31619 cmcm2i 31621 cmbr3i 31628 fh3i 31651 fh4i 31652 osumcor2i 31672 mayetes3i 31757 mdslmd3i 32360 mdexchi 32363 atabsi 32429 dmdbr5ati 32450 inin 32543 uniin2 32572 of0r 32694 dfprm3 33560 ordtrest2NEW 33883 hasheuni 34065 carsgclctunlem1 34298 eulerpartgbij 34353 fiblem 34379 cvmscld 35257 sate0 35399 msrid 35529 elrn3 35741 bj-inrab3 36911 poimirlem15 37621 mblfinlem2 37644 ftc1anclem6 37684 xrnres2 38384 redundss3 38609 refrelsredund4 38613 pol0N 39891 readvrec2 42369 mapfzcons2 42706 diophrw 42746 conrel2d 43653 iunrelexp0 43691 hashnzfz 44315 disjinfi 45134 fourierdlem80 46141 sge0resplit 46361 sge0split 46364 caragenuncllem 46467 iscnrm3rlem1 48736 |
Copyright terms: Public domain | W3C validator |