![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq2 4235 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: in4 4255 inindir 4257 indif2 4300 difun1 4318 dfrab3ss 4342 undif1 4499 difdifdir 4515 dfif3 4562 dfif5 4564 disjpr2 4738 disjprsn 4739 disjtp2 4741 intunsn 5011 rint0 5012 riin0 5105 csbres 6012 res0 6013 resres 6022 resundi 6023 resindi 6025 inres 6027 resiun2 6030 resopab 6063 dffr3 6129 dfse2 6130 dminxp 6211 imainrect 6212 cnvrescnv 6226 resdmres 6263 resdifdi 6267 dfpo2 6327 snres0 6329 dfpred2 6342 predidm 6358 funimacnv 6659 fresaun 6792 fresaunres2 6793 wfrlem13OLD 8377 tfrlem10 8443 sbthlem5 9153 infssuni 9414 dfsup2 9513 en3lplem2 9682 wemapwe 9766 epfrs 9800 r0weon 10081 infxpenlem 10082 kmlem11 10230 ackbij1lem1 10288 ackbij1lem2 10289 axdc3lem4 10522 canthwelem 10719 dmaddpi 10959 dmmulpi 10960 ssxr 11359 dmhashres 14390 fz1isolem 14510 f1oun2prg 14966 fsumiun 15869 sadeq 16518 bitsres 16519 smuval2 16528 smumul 16539 ressinbas 17304 lubdm 18421 glbdm 18434 sylow2a 19661 lsmmod2 19718 lsmdisj2r 19727 ablfac1eu 20117 pjdm 21750 ressmplbas2 22068 opsrtoslem1 22102 rintopn 22936 ordtrest2 23233 cmpsublem 23428 kgentopon 23567 hausdiag 23674 uzrest 23926 ufprim 23938 trust 24259 metnrmlem3 24902 clsocv 25303 ismbl 25580 unmbl 25591 volinun 25600 voliunlem1 25604 ovolioo 25622 itg2cnlem2 25817 ellimc2 25932 limcflf 25936 lhop1lem 26072 lgsquadlem3 27444 rplogsum 27589 noextend 27729 noextendseq 27730 noetasuplem2 27797 noetainflem2 27801 madeval2 27910 umgrislfupgrlem 29157 spthispth 29762 0pth 30157 1pthdlem2 30168 frgrncvvdeqlem3 30333 ex-in 30457 chdmj3i 31515 chdmj4i 31516 chjassi 31518 pjoml2i 31617 pjoml3i 31618 cmcmlem 31623 cmcm2i 31625 cmbr3i 31632 fh3i 31655 fh4i 31656 osumcor2i 31676 mayetes3i 31761 mdslmd3i 32364 mdexchi 32367 atabsi 32433 dmdbr5ati 32454 inin 32545 uniin2 32575 of0r 32696 dfprm3 33546 ordtrest2NEW 33869 hasheuni 34049 carsgclctunlem1 34282 eulerpartgbij 34337 fiblem 34363 cvmscld 35241 sate0 35383 msrid 35513 elrn3 35724 bj-inrab3 36895 poimirlem15 37595 mblfinlem2 37618 ftc1anclem6 37658 xrnres2 38359 redundss3 38584 refrelsredund4 38588 pol0N 39866 mapfzcons2 42675 diophrw 42715 conrel2d 43626 iunrelexp0 43664 hashnzfz 44289 disjinfi 45099 fourierdlem80 46107 sge0resplit 46327 sge0split 46330 caragenuncllem 46433 iscnrm3rlem1 48620 |
Copyright terms: Public domain | W3C validator |