Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq2 4137 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: in4 4156 inindir 4158 indif2 4201 difun1 4220 dfrab3ss 4243 undif1 4406 difdifdir 4419 dfif3 4470 dfif5 4472 disjpr2 4646 disjprsn 4647 disjtp2 4649 intunsn 4917 rint0 4918 riin0 5007 csbres 5883 res0 5884 resres 5893 resundi 5894 resindi 5896 inres 5898 resiun2 5901 resopab 5931 dffr3 5996 dfse2 5997 dminxp 6072 imainrect 6073 cnvrescnv 6087 resdmres 6124 resdifdi 6128 dfpo2 6188 dfpred2 6201 predidm 6218 funimacnv 6499 fresaun 6629 fresaunres2 6630 wfrlem13OLD 8123 tfrlem10 8189 sbthlem5 8827 infssuni 9040 dfsup2 9133 en3lplem2 9301 wemapwe 9385 epfrs 9420 r0weon 9699 infxpenlem 9700 kmlem11 9847 ackbij1lem1 9907 ackbij1lem2 9908 axdc3lem4 10140 canthwelem 10337 dmaddpi 10577 dmmulpi 10578 ssxr 10975 dmhashres 13983 fz1isolem 14103 f1oun2prg 14558 fsumiun 15461 sadeq 16107 bitsres 16108 smuval2 16117 smumul 16128 ressinbas 16881 lubdm 17984 glbdm 17997 sylow2a 19139 lsmmod2 19197 lsmdisj2r 19206 ablfac1eu 19591 pjdm 20824 ressmplbas2 21138 opsrtoslem1 21172 rintopn 21966 ordtrest2 22263 cmpsublem 22458 kgentopon 22597 hausdiag 22704 uzrest 22956 ufprim 22968 trust 23289 metnrmlem3 23930 clsocv 24319 ismbl 24595 unmbl 24606 volinun 24615 voliunlem1 24619 ovolioo 24637 itg2cnlem2 24832 ellimc2 24946 limcflf 24950 lhop1lem 25082 lgsquadlem3 26435 rplogsum 26580 umgrislfupgrlem 27395 spthispth 27995 0pth 28390 1pthdlem2 28401 frgrncvvdeqlem3 28566 ex-in 28690 chdmj3i 29746 chdmj4i 29747 chjassi 29749 pjoml2i 29848 pjoml3i 29849 cmcmlem 29854 cmcm2i 29856 cmbr3i 29863 fh3i 29886 fh4i 29887 osumcor2i 29907 mayetes3i 29992 mdslmd3i 30595 mdexchi 30598 atabsi 30664 dmdbr5ati 30685 inin 30763 uniin2 30793 ordtrest2NEW 31775 hasheuni 31953 carsgclctunlem1 32184 eulerpartgbij 32239 fiblem 32265 cvmscld 33135 sate0 33277 msrid 33407 snres0 33577 elrn3 33635 noextend 33796 noextendseq 33797 noetasuplem2 33864 noetainflem2 33868 madeval2 33964 bj-inrab3 35044 poimirlem15 35719 mblfinlem2 35742 ftc1anclem6 35782 xrnres2 36456 redundss3 36668 refrelsredund4 36672 pol0N 37850 mapfzcons2 40457 diophrw 40497 conrel2d 41161 iunrelexp0 41199 hashnzfz 41827 disjinfi 42620 fourierdlem80 43617 sge0resplit 43834 sge0split 43837 caragenuncllem 43940 iscnrm3rlem1 46122 |
Copyright terms: Public domain | W3C validator |