| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 4177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: in4 4197 inindir 4199 indif2 4244 difun1 4262 dfrab3ss 4286 undif1 4439 difdifdir 4455 dfif3 4503 dfif5 4505 disjpr2 4677 disjprsn 4678 disjtp2 4680 intunsn 4951 rint0 4952 riin0 5046 csbres 5953 res0 5954 resres 5963 resundi 5964 resindi 5966 inres 5968 resiun2 5971 resopab 6005 dffr3 6070 dfse2 6071 dminxp 6153 imainrect 6154 cnvrescnv 6168 resdmres 6205 resdifdi 6209 dfpo2 6269 snres0 6271 dfpred2 6284 predidm 6299 funimacnv 6597 fresaun 6731 fresaunres2 6732 tfrlem10 8355 sbthlem5 9055 infssuni 9297 dfsup2 9395 en3lplem2 9566 wemapwe 9650 epfrs 9684 r0weon 9965 infxpenlem 9966 kmlem11 10114 ackbij1lem1 10172 ackbij1lem2 10173 axdc3lem4 10406 canthwelem 10603 dmaddpi 10843 dmmulpi 10844 ssxr 11243 dmhashres 14306 fz1isolem 14426 f1oun2prg 14883 fsumiun 15787 sadeq 16442 bitsres 16443 smuval2 16452 smumul 16463 ressinbas 17215 lubdm 18310 glbdm 18323 sylow2a 19549 lsmmod2 19606 lsmdisj2r 19615 ablfac1eu 20005 pjdm 21616 ressmplbas2 21934 opsrtoslem1 21962 rintopn 22796 ordtrest2 23091 cmpsublem 23286 kgentopon 23425 hausdiag 23532 uzrest 23784 ufprim 23796 trust 24117 metnrmlem3 24750 clsocv 25150 ismbl 25427 unmbl 25438 volinun 25447 voliunlem1 25451 ovolioo 25469 itg2cnlem2 25663 ellimc2 25778 limcflf 25782 lhop1lem 25918 lgsquadlem3 27293 rplogsum 27438 noextend 27578 noextendseq 27579 noetasuplem2 27646 noetainflem2 27650 madeval2 27761 onsiso 28169 bdayn0sf1o 28259 umgrislfupgrlem 29049 spthispth 29654 cyclnumvtx 29730 0pth 30054 1pthdlem2 30065 frgrncvvdeqlem3 30230 ex-in 30354 chdmj3i 31412 chdmj4i 31413 chjassi 31415 pjoml2i 31514 pjoml3i 31515 cmcmlem 31520 cmcm2i 31522 cmbr3i 31529 fh3i 31552 fh4i 31553 osumcor2i 31573 mayetes3i 31658 mdslmd3i 32261 mdexchi 32264 atabsi 32330 dmdbr5ati 32351 inin 32445 uniin2 32481 of0r 32602 dfprm3 33524 ordtrest2NEW 33913 hasheuni 34075 carsgclctunlem1 34308 eulerpartgbij 34363 fiblem 34389 cvmscld 35260 sate0 35402 msrid 35532 elrn3 35749 bj-inrab3 36917 poimirlem15 37629 mblfinlem2 37652 ftc1anclem6 37692 dmxrncnvep 38362 xrnres2 38389 redundss3 38619 refrelsredund4 38623 pol0N 39903 readvrec2 42349 mapfzcons2 42707 diophrw 42747 conrel2d 43653 iunrelexp0 43691 hashnzfz 44309 wfaxpow 44987 disjinfi 45186 fourierdlem80 46184 sge0resplit 46404 sge0split 46407 caragenuncllem 46510 iscnrm3rlem1 48925 |
| Copyright terms: Public domain | W3C validator |