Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq2 4141 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-in 3895 |
This theorem is referenced by: in4 4160 inindir 4162 indif2 4205 difun1 4224 dfrab3ss 4247 undif1 4410 difdifdir 4423 dfif3 4474 dfif5 4476 disjpr2 4650 disjprsn 4651 disjtp2 4653 intunsn 4921 rint0 4922 riin0 5012 csbres 5897 res0 5898 resres 5907 resundi 5908 resindi 5910 inres 5912 resiun2 5915 resopab 5945 dffr3 6010 dfse2 6011 dminxp 6088 imainrect 6089 cnvrescnv 6103 resdmres 6140 resdifdi 6144 dfpo2 6203 dfpred2 6216 predidm 6233 funimacnv 6522 fresaun 6654 fresaunres2 6655 wfrlem13OLD 8161 tfrlem10 8227 sbthlem5 8883 infssuni 9119 dfsup2 9212 en3lplem2 9380 wemapwe 9464 epfrs 9498 r0weon 9777 infxpenlem 9778 kmlem11 9925 ackbij1lem1 9985 ackbij1lem2 9986 axdc3lem4 10218 canthwelem 10415 dmaddpi 10655 dmmulpi 10656 ssxr 11053 dmhashres 14064 fz1isolem 14184 f1oun2prg 14639 fsumiun 15542 sadeq 16188 bitsres 16189 smuval2 16198 smumul 16209 ressinbas 16964 lubdm 18078 glbdm 18091 sylow2a 19233 lsmmod2 19291 lsmdisj2r 19300 ablfac1eu 19685 pjdm 20923 ressmplbas2 21237 opsrtoslem1 21271 rintopn 22067 ordtrest2 22364 cmpsublem 22559 kgentopon 22698 hausdiag 22805 uzrest 23057 ufprim 23069 trust 23390 metnrmlem3 24033 clsocv 24423 ismbl 24699 unmbl 24710 volinun 24719 voliunlem1 24723 ovolioo 24741 itg2cnlem2 24936 ellimc2 25050 limcflf 25054 lhop1lem 25186 lgsquadlem3 26539 rplogsum 26684 umgrislfupgrlem 27501 spthispth 28103 0pth 28498 1pthdlem2 28509 frgrncvvdeqlem3 28674 ex-in 28798 chdmj3i 29854 chdmj4i 29855 chjassi 29857 pjoml2i 29956 pjoml3i 29957 cmcmlem 29962 cmcm2i 29964 cmbr3i 29971 fh3i 29994 fh4i 29995 osumcor2i 30015 mayetes3i 30100 mdslmd3i 30703 mdexchi 30706 atabsi 30772 dmdbr5ati 30793 inin 30871 uniin2 30901 ordtrest2NEW 31882 hasheuni 32062 carsgclctunlem1 32293 eulerpartgbij 32348 fiblem 32374 cvmscld 33244 sate0 33386 msrid 33516 snres0 33684 elrn3 33738 noextend 33878 noextendseq 33879 noetasuplem2 33946 noetainflem2 33950 madeval2 34046 bj-inrab3 35126 poimirlem15 35801 mblfinlem2 35824 ftc1anclem6 35864 xrnres2 36536 redundss3 36748 refrelsredund4 36752 pol0N 37930 mapfzcons2 40548 diophrw 40588 conrel2d 41279 iunrelexp0 41317 hashnzfz 41945 disjinfi 42738 fourierdlem80 43734 sge0resplit 43951 sge0split 43954 caragenuncllem 44057 iscnrm3rlem1 46245 |
Copyright terms: Public domain | W3C validator |