| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 4165 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: in4 4185 inindir 4187 indif2 4232 difun1 4250 dfrab3ss 4274 undif1 4427 difdifdir 4443 dfif3 4491 dfif5 4493 disjpr2 4665 disjprsn 4666 disjtp2 4668 intunsn 4937 rint0 4938 riin0 5031 csbres 5933 res0 5934 resres 5943 resundi 5944 resindi 5946 inres 5948 resiun2 5951 resopab 5985 dffr3 6050 dfse2 6051 dminxp 6129 imainrect 6130 cnvrescnv 6144 resdmres 6181 resdifdi 6185 dfpo2 6244 snres0 6246 dfpred2 6259 predidm 6274 funimacnv 6563 fresaun 6695 fresaunres2 6696 tfrlem10 8309 sbthlem5 9008 infssuni 9236 dfsup2 9334 en3lplem2 9509 wemapwe 9593 epfrs 9627 r0weon 9906 infxpenlem 9907 kmlem11 10055 ackbij1lem1 10113 ackbij1lem2 10114 axdc3lem4 10347 canthwelem 10544 dmaddpi 10784 dmmulpi 10785 ssxr 11185 dmhashres 14248 fz1isolem 14368 f1oun2prg 14824 fsumiun 15728 sadeq 16383 bitsres 16384 smuval2 16393 smumul 16404 ressinbas 17156 lubdm 18255 glbdm 18268 sylow2a 19498 lsmmod2 19555 lsmdisj2r 19564 ablfac1eu 19954 pjdm 21614 ressmplbas2 21932 opsrtoslem1 21960 rintopn 22794 ordtrest2 23089 cmpsublem 23284 kgentopon 23423 hausdiag 23530 uzrest 23782 ufprim 23794 trust 24115 metnrmlem3 24748 clsocv 25148 ismbl 25425 unmbl 25436 volinun 25445 voliunlem1 25449 ovolioo 25467 itg2cnlem2 25661 ellimc2 25776 limcflf 25780 lhop1lem 25916 lgsquadlem3 27291 rplogsum 27436 noextend 27576 noextendseq 27577 noetasuplem2 27644 noetainflem2 27648 madeval2 27763 onsiso 28174 bdayn0sf1o 28264 umgrislfupgrlem 29067 spthispth 29669 cyclnumvtx 29745 0pth 30069 1pthdlem2 30080 frgrncvvdeqlem3 30245 ex-in 30369 chdmj3i 31427 chdmj4i 31428 chjassi 31430 pjoml2i 31529 pjoml3i 31530 cmcmlem 31535 cmcm2i 31537 cmbr3i 31544 fh3i 31567 fh4i 31568 osumcor2i 31588 mayetes3i 31673 mdslmd3i 32276 mdexchi 32279 atabsi 32345 dmdbr5ati 32366 inin 32460 uniin2 32496 of0r 32621 dfprm3 33490 psrbasfsupp 33544 ordtrest2NEW 33890 hasheuni 34052 carsgclctunlem1 34285 eulerpartgbij 34340 fiblem 34366 cvmscld 35250 sate0 35392 msrid 35522 elrn3 35739 bj-inrab3 36907 poimirlem15 37619 mblfinlem2 37642 ftc1anclem6 37682 dmxrncnvep 38352 xrnres2 38379 redundss3 38609 refrelsredund4 38613 pol0N 39892 readvrec2 42338 mapfzcons2 42696 diophrw 42736 conrel2d 43641 iunrelexp0 43679 hashnzfz 44297 wfaxpow 44975 disjinfi 45174 fourierdlem80 46171 sge0resplit 46391 sge0split 46394 caragenuncllem 46497 iscnrm3rlem1 48928 |
| Copyright terms: Public domain | W3C validator |