| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| dfrab3 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3436 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | inab 4308 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | abid2 2878 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 3 | ineq1i 4215 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| 5 | 1, 2, 4 | 3eqtr2i 2770 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 {crab 3435 ∩ cin 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-in 3957 |
| This theorem is referenced by: dfrab2 4319 notrab 4321 dfrab3ss 4322 dfif3 4539 dffr3 6116 dfse2 6117 tz6.26OLD 6368 rabfi 9304 dfsup2 9485 ressmplbas2 22046 clsocv 25285 hasheuni 34087 bj-inrab3 36931 bj-reabeq 37029 hashnzfz 44344 |
| Copyright terms: Public domain | W3C validator |