| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| dfrab3 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3416 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | inab 4284 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | abid2 2872 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 3 | ineq1i 4191 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| 5 | 1, 2, 4 | 3eqtr2i 2764 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 |
| This theorem is referenced by: dfrab2 4295 notrab 4297 dfrab3ss 4298 dfif3 4515 dffr3 6086 dfse2 6087 tz6.26OLD 6337 rabfi 9273 dfsup2 9454 ressmplbas2 21983 clsocv 25200 hasheuni 34062 bj-inrab3 36893 bj-reabeq 36991 hashnzfz 44292 |
| Copyright terms: Public domain | W3C validator |