MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3 Structured version   Visualization version   GIF version

Theorem dfrab3 4309
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 3433 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 4299 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2871 . . 3 {𝑥𝑥𝐴} = 𝐴
43ineq1i 4208 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
51, 2, 43eqtr2i 2766 1 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {cab 2709  {crab 3432  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955
This theorem is referenced by:  dfrab2  4310  notrab  4311  dfrab3ss  4312  dfif3  4542  dffr3  6098  dfse2  6099  tz6.26OLD  6349  rabfi  9268  dfsup2  9438  ressmplbas2  21581  clsocv  24766  hasheuni  33078  bj-inrab3  35804  bj-reabeq  35903  hashnzfz  43069
  Copyright terms: Public domain W3C validator