| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| dfrab3 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | inab 4254 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 3 | abid2 2868 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 3 | ineq1i 4161 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| 5 | 1, 2, 4 | 3eqtr2i 2760 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: dfrab2 4265 notrab 4267 dfrab3ss 4268 dfif3 4485 dffr3 6043 dfse2 6044 rabfi 9150 dfsup2 9323 ressmplbas2 21957 clsocv 25172 hasheuni 34090 bj-inrab3 36963 bj-reabeq 37061 hashnzfz 44353 |
| Copyright terms: Public domain | W3C validator |