MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3 Structured version   Visualization version   GIF version

Theorem dfrab3 4243
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 3073 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 4233 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2882 . . 3 {𝑥𝑥𝐴} = 𝐴
43ineq1i 4142 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
51, 2, 43eqtr2i 2772 1 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894
This theorem is referenced by:  dfrab2  4244  notrab  4245  dfrab3ss  4246  dfif3  4473  dffr3  6007  dfse2  6008  tz6.26OLD  6251  rabfi  9044  dfsup2  9203  ressmplbas2  21228  clsocv  24414  hasheuni  32053  bj-inrab3  35117  bj-reabeq  35217  hashnzfz  41938
  Copyright terms: Public domain W3C validator