Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrab3ss | Structured version Visualization version GIF version |
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
Ref | Expression |
---|---|
dfrab3ss | ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3900 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ineq1 4136 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ {𝑥 ∣ 𝜑})) | |
3 | 2 | eqcomd 2744 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ {𝑥 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑})) |
5 | dfrab3 4240 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
6 | dfrab3 4240 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = (𝐵 ∩ {𝑥 ∣ 𝜑}) | |
7 | 6 | ineq2i 4140 | . . 3 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) |
8 | inass 4150 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥 ∣ 𝜑})) | |
9 | 7, 8 | eqtr4i 2769 | . 2 ⊢ (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ((𝐴 ∩ 𝐵) ∩ {𝑥 ∣ 𝜑}) |
10 | 4, 5, 9 | 3eqtr4g 2804 | 1 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 {crab 3067 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: mbfposadd 35751 proot1hash 40941 |
Copyright terms: Public domain | W3C validator |