MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3ss Structured version   Visualization version   GIF version

Theorem dfrab3ss 4246
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
Assertion
Ref Expression
dfrab3ss (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3ss
StepHypRef Expression
1 df-ss 3904 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ineq1 4139 . . . 4 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑}))
32eqcomd 2744 . . 3 ((𝐴𝐵) = 𝐴 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
41, 3sylbi 216 . 2 (𝐴𝐵 → (𝐴 ∩ {𝑥𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑}))
5 dfrab3 4243 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
6 dfrab3 4243 . . . 4 {𝑥𝐵𝜑} = (𝐵 ∩ {𝑥𝜑})
76ineq2i 4143 . . 3 (𝐴 ∩ {𝑥𝐵𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
8 inass 4153 . . 3 ((𝐴𝐵) ∩ {𝑥𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
97, 8eqtr4i 2769 . 2 (𝐴 ∩ {𝑥𝐵𝜑}) = ((𝐴𝐵) ∩ {𝑥𝜑})
104, 5, 93eqtr4g 2803 1 (𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  {crab 3068  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  mbfposadd  35824  proot1hash  41025
  Copyright terms: Public domain W3C validator