![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtr | Structured version Visualization version GIF version |
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabtr | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3981 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 3914 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | tru 1526 | . . . 4 ⊢ ⊤ | |
4 | 3 | rgenw 3117 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ⊤ |
5 | ssrab 3974 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⊤)) | |
6 | 2, 4, 5 | mpbir2an 707 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3909 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ⊤wtru 1523 ∀wral 3105 {crab 3109 ⊆ wss 3863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-in 3870 df-ss 3878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |