| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtr | Structured version Visualization version GIF version | ||
| Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-rabtr | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4029 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
| 2 | ssid 3953 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | tru 1545 | . . . 4 ⊢ ⊤ | |
| 4 | 3 | rgenw 3052 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ⊤ |
| 5 | ssrab 4020 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⊤)) | |
| 6 | 2, 4, 5 | mpbir2an 711 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
| 7 | 1, 6 | eqssi 3947 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∀wral 3048 {crab 3396 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rab 3397 df-ss 3915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |