Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtr | Structured version Visualization version GIF version |
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabtr | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 3943 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | tru 1543 | . . . 4 ⊢ ⊤ | |
4 | 3 | rgenw 3076 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ⊤ |
5 | ssrab 4006 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⊤)) | |
6 | 2, 4, 5 | mpbir2an 708 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3937 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∀wral 3064 {crab 3068 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |