Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtr Structured version   Visualization version   GIF version

Theorem bj-rabtr 35118
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
Assertion
Ref Expression
bj-rabtr {𝑥𝐴 ∣ ⊤} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-rabtr
StepHypRef Expression
1 ssrab2 4013 . 2 {𝑥𝐴 ∣ ⊤} ⊆ 𝐴
2 ssid 3943 . . 3 𝐴𝐴
3 tru 1543 . . . 4
43rgenw 3076 . . 3 𝑥𝐴
5 ssrab 4006 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ ⊤} ↔ (𝐴𝐴 ∧ ∀𝑥𝐴 ⊤))
62, 4, 5mpbir2an 708 . 2 𝐴 ⊆ {𝑥𝐴 ∣ ⊤}
71, 6eqssi 3937 1 {𝑥𝐴 ∣ ⊤} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wral 3064  {crab 3068  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator