Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabtr | Structured version Visualization version GIF version |
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabtr | ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3993 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} ⊆ 𝐴 | |
2 | ssid 3923 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | tru 1547 | . . . 4 ⊢ ⊤ | |
4 | 3 | rgenw 3073 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ⊤ |
5 | ssrab 3986 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ (𝐴 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ⊤)) | |
6 | 2, 4, 5 | mpbir2an 711 | . 2 ⊢ 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | 1, 6 | eqssi 3917 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊤wtru 1544 ∀wral 3061 {crab 3065 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |