Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsstrset Structured version   Visualization version   GIF version

Theorem setsstrset 33582
Description: Relation between df-sets 16191 and df-strset 33581. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.)
Assertion
Ref Expression
setsstrset ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))

Proof of Theorem setsstrset
StepHypRef Expression
1 setsval 16214 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩) = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩}))
2 df-strset 33581 . 2 [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
31, 2syl6reqr 2852 1 ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  cdif 3766  cun 3767  {csn 4368  cop 4374  cres 5314  cfv 6101  (class class class)co 6878  ndxcnx 16181   sSet csts 16182  [cstrset 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-res 5324  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-sets 16191  df-strset 33581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator