Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsstrset Structured version   Visualization version   GIF version

Theorem setsstrset 37169
Description: Relation between df-sets 17072 and df-strset 37168. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.)
Assertion
Ref Expression
setsstrset ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))

Proof of Theorem setsstrset
StepHypRef Expression
1 df-strset 37168 . 2 [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
2 setsval 17075 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩) = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩}))
31, 2eqtr4id 2785 1 ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cun 3900  {csn 4576  cop 4582  cres 5618  cfv 6481  (class class class)co 7346   sSet csts 17071  ndxcnx 17101  [cstrset 37167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sets 17072  df-strset 37168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator