Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsstrset Structured version   Visualization version   GIF version

Theorem setsstrset 35234
Description: Relation between df-sets 16793 and df-strset 35233. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.)
Assertion
Ref Expression
setsstrset ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))

Proof of Theorem setsstrset
StepHypRef Expression
1 df-strset 35233 . 2 [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
2 setsval 16796 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩) = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩}))
31, 2eqtr4id 2798 1 ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  {csn 4558  cop 4564  cres 5582  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  [cstrset 35232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sets 16793  df-strset 35233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator