Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsstrset Structured version   Visualization version   GIF version

Theorem setsstrset 37119
Description: Relation between df-sets 17198 and df-strset 37118. Temporary theorem kept during the transition from the former to the latter. (Contributed by BJ, 13-Feb-2022.)
Assertion
Ref Expression
setsstrset ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))

Proof of Theorem setsstrset
StepHypRef Expression
1 df-strset 37118 . 2 [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
2 setsval 17201 . 2 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩) = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩}))
31, 2eqtr4id 2794 1 ((𝑆𝑉𝐵𝑊) → [𝐵 / 𝐴]struct𝑆 = (𝑆 sSet ⟨(𝐴‘ndx), 𝐵⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  cun 3961  {csn 4631  cop 4637  cres 5691  cfv 6563  (class class class)co 7431   sSet csts 17197  ndxcnx 17227  [cstrset 37117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17198  df-strset 37118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator