![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2178. (Revised by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2718 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | nfs1v 2157 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | 1, 2 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 |
This theorem is referenced by: hbab1 2726 abbib 2814 nfab1 2910 ralab2 3719 rexab2 3721 eluniab 4945 elintabOLD 4983 opabex3d 8006 opabex3rd 8007 opabex3 8008 setindtrs 42982 rababg 43536 scottabf 44209 |
Copyright terms: Public domain | W3C validator |