MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab1 Structured version   Visualization version   GIF version

Theorem nfsab1 2725
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2178. (Revised by SN, 20-Sep-2023.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 df-clab 2718 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 nfs1v 2157 . 2 𝑥[𝑦 / 𝑥]𝜑
31, 2nfxfr 1851 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1781  [wsb 2064  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718
This theorem is referenced by:  hbab1  2726  abbib  2814  nfab1  2910  ralab2  3719  rexab2  3721  eluniab  4945  elintabOLD  4983  opabex3d  8006  opabex3rd  8007  opabex3  8008  setindtrs  42982  rababg  43536  scottabf  44209
  Copyright terms: Public domain W3C validator