| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2178. (Revised by SN, 20-Sep-2023.) |
| Ref | Expression |
|---|---|
| nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2715 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 2 | nfs1v 2157 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 |
| This theorem is referenced by: hbab1 2723 abbib 2805 nfab1 2901 ralab2 3685 rexab2 3687 eluniab 4902 elintabOLD 4940 opabex3d 7969 opabex3rd 7970 opabex3 7971 setindtrs 43016 rababg 43565 scottabf 44231 |
| Copyright terms: Public domain | W3C validator |