MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab1 Structured version   Visualization version   GIF version

Theorem nfsab1 2720
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2175. (Revised by SN, 20-Sep-2023.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 df-clab 2713 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 nfs1v 2154 . 2 𝑥[𝑦 / 𝑥]𝜑
31, 2nfxfr 1850 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1780  [wsb 2062  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713
This theorem is referenced by:  hbab1  2721  abbib  2809  nfab1  2905  ralab2  3706  rexab2  3708  eluniab  4926  elintabOLD  4964  opabex3d  7989  opabex3rd  7990  opabex3  7991  setindtrs  43014  rababg  43564  scottabf  44236
  Copyright terms: Public domain W3C validator