![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2172. (Revised by SN, 20-Sep-2023.) |
Ref | Expression |
---|---|
nfsab1 | ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2711 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
2 | nfs1v 2154 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 [wsb 2068 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 |
This theorem is referenced by: hbab1 2719 abbib 2805 clelabOLD 2881 nfab1 2906 ralab2 3659 rexab2 3661 eluniab 4884 elintabOLD 4924 opabex3d 7902 opabex3rd 7903 opabex3 7904 setindtrs 41396 rababg 41938 scottabf 42612 |
Copyright terms: Public domain | W3C validator |