MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab1 Structured version   Visualization version   GIF version

Theorem nfsab1 2723
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2171. (Revised by SN, 20-Sep-2023.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 df-clab 2716 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 nfs1v 2153 . 2 𝑥[𝑦 / 𝑥]𝜑
31, 2nfxfr 1855 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1786  [wsb 2067  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716
This theorem is referenced by:  hbab1  2724  abbi  2810  clelabOLD  2884  nfab1  2909  ralab2  3634  rexab2  3636  eluniab  4854  elintab  4890  opabex3d  7808  opabex3rd  7809  opabex3  7810  setindtrs  40847  rababg  41181  scottabf  41858
  Copyright terms: Public domain W3C validator