MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsab1 Structured version   Visualization version   GIF version

Theorem nfsab1 2723
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove use of ax-12 2173. (Revised by SN, 20-Sep-2023.)
Assertion
Ref Expression
nfsab1 𝑥 𝑦 ∈ {𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfsab1
StepHypRef Expression
1 df-clab 2716 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 nfs1v 2155 . 2 𝑥[𝑦 / 𝑥]𝜑
31, 2nfxfr 1856 1 𝑥 𝑦 ∈ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1787  [wsb 2068  wcel 2108  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716
This theorem is referenced by:  hbab1  2724  abbi  2811  clelabOLD  2883  nfab1  2908  ralab2  3627  ralab2OLD  3628  rexab2  3630  rexab2OLD  3631  eluniab  4851  elintab  4887  opabex3d  7781  opabex3rd  7782  opabex3  7783  setindtrs  40763  rababg  41070  scottabf  41747
  Copyright terms: Public domain W3C validator