![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pwvrelb | Structured version Visualization version GIF version |
Description: Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
bj-pwvrelb | ⊢ (𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝒫 (V × V) → 𝐴 ∈ V) | |
2 | pwvrel 5726 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) | |
3 | 1, 2 | biadanii 819 | 1 ⊢ (𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 𝒫 cpw 4602 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 df-rel 5683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |