| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pwvrelb | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the powerclass of the cartesian square of the universal class: they are exactly the sets which are binary relations. (Contributed by BJ, 16-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-pwvrelb | ⊢ (𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝒫 (V × V) → 𝐴 ∈ V) | |
| 2 | pwvrel 5666 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) | |
| 3 | 1, 2 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝒫 (V × V) ↔ (𝐴 ∈ V ∧ Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 × cxp 5614 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-pw 4552 df-rel 5623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |