Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcsym Structured version   Visualization version   GIF version

Theorem bj-nfcsym 35011
Description: The nonfreeness quantifier for classes defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 5293 with additional axioms; see also nfcv 2906). This could be proved from aecom 2427 and nfcvb 5294 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2744 instead of equcomd 2023; removing dependency on ax-ext 2709 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2925, eleq2d 2824 (using elequ2 2123), nfcvf 2935, dvelimc 2934, dvelimdc 2933, nfcvf2 2936. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfcsym (𝑥𝑦𝑦𝑥)

Proof of Theorem bj-nfcsym
StepHypRef Expression
1 sp 2178 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21equcomd 2023 . . 3 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑥)
32drnfc1 2925 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
4 nfcvf 2935 . . 3 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
5 nfcvf2 2936 . . 3 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
64, 52thd 264 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
73, 6pm2.61i 182 1 (𝑥𝑦𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-cleq 2730  df-nfc 2888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator