MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvrel Structured version   Visualization version   GIF version

Theorem pwvrel 5726
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.)
Assertion
Ref Expression
pwvrel (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))

Proof of Theorem pwvrel
StepHypRef Expression
1 elpwg 4605 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V)))
2 df-rel 5683 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2105  Vcvv 3473  wss 3948  𝒫 cpw 4602   × cxp 5674  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-in 3955  df-ss 3965  df-pw 4604  df-rel 5683
This theorem is referenced by:  pwvabrel  5727  bj-pwvrelb  36242
  Copyright terms: Public domain W3C validator