MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvrel Structured version   Visualization version   GIF version

Theorem pwvrel 5728
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.)
Assertion
Ref Expression
pwvrel (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))

Proof of Theorem pwvrel
StepHypRef Expression
1 elpwg 4607 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V)))
2 df-rel 5685 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2bitr4di 288 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  Vcvv 3461  wss 3944  𝒫 cpw 4604   × cxp 5676  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ss 3961  df-pw 4606  df-rel 5685
This theorem is referenced by:  pwvabrel  5729  bj-pwvrelb  36507
  Copyright terms: Public domain W3C validator