MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvrel Structured version   Visualization version   GIF version

Theorem pwvrel 5628
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.)
Assertion
Ref Expression
pwvrel (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))

Proof of Theorem pwvrel
StepHypRef Expression
1 elpwg 4533 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V)))
2 df-rel 5587 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2bitr4di 288 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-rel 5587
This theorem is referenced by:  pwvabrel  5629  bj-pwvrelb  35010
  Copyright terms: Public domain W3C validator