| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwvrel | Structured version Visualization version GIF version | ||
| Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.) |
| Ref | Expression |
|---|---|
| pwvrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 4583 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5666 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5657 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-pw 4582 df-rel 5666 |
| This theorem is referenced by: pwvabrel 5710 bj-pwvrelb 36921 |
| Copyright terms: Public domain | W3C validator |