| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwvrel | Structured version Visualization version GIF version | ||
| Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.) |
| Ref | Expression |
|---|---|
| pwvrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 4602 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5691 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 × cxp 5682 Rel wrel 5689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ss 3967 df-pw 4601 df-rel 5691 |
| This theorem is referenced by: pwvabrel 5735 bj-pwvrelb 36900 |
| Copyright terms: Public domain | W3C validator |