MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwvrel Structured version   Visualization version   GIF version

Theorem pwvrel 5739
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.)
Assertion
Ref Expression
pwvrel (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))

Proof of Theorem pwvrel
StepHypRef Expression
1 elpwg 4608 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V)))
2 df-rel 5696 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2bitr4di 289 1 (𝐴𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605   × cxp 5687  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ss 3980  df-pw 4607  df-rel 5696
This theorem is referenced by:  pwvabrel  5740  bj-pwvrelb  36881
  Copyright terms: Public domain W3C validator