![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwvrel | Structured version Visualization version GIF version |
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
pwvrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 4605 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V))) | |
2 | df-rel 5683 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 df-rel 5683 |
This theorem is referenced by: pwvabrel 5727 bj-pwvrelb 36242 |
Copyright terms: Public domain | W3C validator |