Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwvrel | Structured version Visualization version GIF version |
Description: A set is a binary relation if and only if it belongs to the powerclass of the cartesian square of the universal class. (Contributed by Peter Mazsa, 14-Jun-2018.) (Revised by BJ, 16-Dec-2023.) |
Ref | Expression |
---|---|
pwvrel | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 4533 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ 𝐴 ⊆ (V × V))) | |
2 | df-rel 5587 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | 1, 2 | bitr4di 288 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 (V × V) ↔ Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-rel 5587 |
This theorem is referenced by: pwvabrel 5629 bj-pwvrelb 35010 |
Copyright terms: Public domain | W3C validator |