![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbeqALT | Structured version Visualization version GIF version |
Description: Substitution in an equality (use the more general version bj-sbeq 36867 instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sbeqALT | ⊢ ([𝑦 / 𝑥]𝐴 = 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑦 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3946 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
2 | nfcsb1v 3946 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
3 | 1, 2 | nfeq 2922 | . 2 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑦 / 𝑥⦌𝐵 |
4 | csbeq1a 3935 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
5 | csbeq1a 3935 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 4, 5 | eqeq12d 2756 | . 2 ⊢ (𝑥 = 𝑦 → (𝐴 = 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑦 / 𝑥⦌𝐵)) |
7 | 3, 6 | sbiev 2318 | 1 ⊢ ([𝑦 / 𝑥]𝐴 = 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑦 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 [wsb 2064 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |