| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2902 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: nfeq1 2907 nfeq2 2909 nfne 3026 raleqf 3329 rexeqfOLD 3331 rmoeq1f 3395 rabeqf 3440 csbhypf 3890 sbceqg 4375 nffn 6617 nffo 6771 fvmptd3f 6983 mpteqb 6987 fvmptf 6989 eqfnfv2f 7007 dff13f 7230 ovmpos 7537 ov2gf 7538 ovmpodxf 7539 ovmpodf 7545 eqerlem 8706 seqof2 14025 sumeq2ii 15659 sumss 15690 fsumadd 15706 fsummulc2 15750 fsumrelem 15773 prodeq1f 15872 prodeq2ii 15877 fprodmul 15926 fproddiv 15927 txcnp 23507 ptcnplem 23508 cnmpt11 23550 cnmpt21 23558 cnmptcom 23565 mbfeqalem1 25542 mbflim 25569 itgeq1f 25672 itgeq1fOLD 25673 itgeqa 25715 dvmptfsum 25879 ulmss 26306 leibpi 26852 o1cxp 26885 lgseisenlem2 27287 nosupbnd1 27626 2ndresdju 32573 aciunf1lem 32586 sigapildsys 34152 bnj1316 34810 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1519 35055 bnj1520 35056 bnj1529 35060 subtr 36302 subtr2 36303 bj-sbeqALT 36888 poimirlem25 37639 iuneq2f 38150 mpobi123f 38156 mptbi12f 38160 dvdsrabdioph 42798 fphpd 42804 mnringmulrcld 44217 fvelrnbf 45012 refsum2cnlem1 45031 elrnmpt1sf 45183 choicefi 45194 axccdom 45216 uzublem 45426 fsumf1of 45572 fmuldfeq 45581 mccl 45596 climmulf 45602 climexp 45603 climsuse 45606 climrecf 45607 climaddf 45613 mullimc 45614 neglimc 45645 addlimc 45646 0ellimcdiv 45647 climeldmeqmpt 45666 climfveqmpt 45669 climfveqf 45678 climfveqmpt3 45680 climeldmeqf 45681 climeqf 45686 climeldmeqmpt3 45687 limsupubuzlem 45710 limsupequz 45721 dvnmptdivc 45936 dvmptfprod 45943 stoweidlem18 46016 stoweidlem31 46029 stoweidlem55 46053 stoweidlem59 46057 sge0iunmpt 46416 sge0reuz 46445 iundjiun 46458 hoicvrrex 46554 ovnhoilem1 46599 ovnlecvr2 46608 opnvonmbllem1 46630 vonioo 46680 vonicc 46683 sssmf 46736 smflim 46775 smfpimcclem 46805 smfpimcc 46806 cfsetsnfsetf 47056 ovmpordxf 48324 |
| Copyright terms: Public domain | W3C validator |