| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2905 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1548 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-nfc 2881 |
| This theorem is referenced by: nfeq1 2910 nfeq2 2912 nfne 3029 raleqf 3321 rexeqfOLD 3323 rmoeq1f 3385 rabeqf 3429 csbhypf 3873 sbceqg 4359 nffn 6580 nffo 6734 fvmptd3f 6944 mpteqb 6948 fvmptf 6950 eqfnfv2f 6968 dff13f 7189 ovmpos 7494 ov2gf 7495 ovmpodxf 7496 ovmpodf 7502 eqerlem 8657 seqof2 13967 sumeq2ii 15600 sumss 15631 fsumadd 15647 fsummulc2 15691 fsumrelem 15714 prodeq1f 15813 prodeq2ii 15818 fprodmul 15867 fproddiv 15868 txcnp 23535 ptcnplem 23536 cnmpt11 23578 cnmpt21 23586 cnmptcom 23593 mbfeqalem1 25569 mbflim 25596 itgeq1f 25699 itgeq1fOLD 25700 itgeqa 25742 dvmptfsum 25906 ulmss 26333 leibpi 26879 o1cxp 26912 lgseisenlem2 27314 nosupbnd1 27653 2ndresdju 32631 aciunf1lem 32644 sigapildsys 34175 bnj1316 34832 bnj1446 35057 bnj1447 35058 bnj1448 35059 bnj1519 35077 bnj1520 35078 bnj1529 35082 subtr 36356 subtr2 36357 bj-sbeqALT 36942 poimirlem25 37693 iuneq2f 38204 mpobi123f 38210 mptbi12f 38214 dvdsrabdioph 42851 fphpd 42857 mnringmulrcld 44269 fvelrnbf 45063 refsum2cnlem1 45082 elrnmpt1sf 45234 choicefi 45245 axccdom 45267 uzublem 45476 fsumf1of 45622 fmuldfeq 45631 mccl 45646 climmulf 45652 climexp 45653 climsuse 45656 climrecf 45657 climaddf 45663 mullimc 45664 neglimc 45693 addlimc 45694 0ellimcdiv 45695 climeldmeqmpt 45714 climfveqmpt 45717 climfveqf 45726 climfveqmpt3 45728 climeldmeqf 45729 climeqf 45734 climeldmeqmpt3 45735 limsupubuzlem 45758 limsupequz 45769 dvnmptdivc 45984 dvmptfprod 45991 stoweidlem18 46064 stoweidlem31 46077 stoweidlem55 46101 stoweidlem59 46105 sge0iunmpt 46464 sge0reuz 46493 iundjiun 46506 hoicvrrex 46602 ovnhoilem1 46647 ovnlecvr2 46656 opnvonmbllem1 46678 vonioo 46728 vonicc 46731 sssmf 46784 smflim 46823 smfpimcclem 46853 smfpimcc 46854 cfsetsnfsetf 47097 ovmpordxf 48378 |
| Copyright terms: Public domain | W3C validator |