| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2902 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: nfeq1 2907 nfeq2 2909 nfne 3026 raleqf 3318 rexeqfOLD 3320 rmoeq1f 3384 rabeqf 3429 csbhypf 3879 sbceqg 4363 nffn 6581 nffo 6735 fvmptd3f 6945 mpteqb 6949 fvmptf 6951 eqfnfv2f 6969 dff13f 7192 ovmpos 7497 ov2gf 7498 ovmpodxf 7499 ovmpodf 7505 eqerlem 8660 seqof2 13967 sumeq2ii 15600 sumss 15631 fsumadd 15647 fsummulc2 15691 fsumrelem 15714 prodeq1f 15813 prodeq2ii 15818 fprodmul 15867 fproddiv 15868 txcnp 23505 ptcnplem 23506 cnmpt11 23548 cnmpt21 23556 cnmptcom 23563 mbfeqalem1 25540 mbflim 25567 itgeq1f 25670 itgeq1fOLD 25671 itgeqa 25713 dvmptfsum 25877 ulmss 26304 leibpi 26850 o1cxp 26883 lgseisenlem2 27285 nosupbnd1 27624 2ndresdju 32592 aciunf1lem 32605 sigapildsys 34129 bnj1316 34787 bnj1446 35012 bnj1447 35013 bnj1448 35014 bnj1519 35032 bnj1520 35033 bnj1529 35037 subtr 36288 subtr2 36289 bj-sbeqALT 36874 poimirlem25 37625 iuneq2f 38136 mpobi123f 38142 mptbi12f 38146 dvdsrabdioph 42783 fphpd 42789 mnringmulrcld 44201 fvelrnbf 44996 refsum2cnlem1 45015 elrnmpt1sf 45167 choicefi 45178 axccdom 45200 uzublem 45409 fsumf1of 45555 fmuldfeq 45564 mccl 45579 climmulf 45585 climexp 45586 climsuse 45589 climrecf 45590 climaddf 45596 mullimc 45597 neglimc 45628 addlimc 45629 0ellimcdiv 45630 climeldmeqmpt 45649 climfveqmpt 45652 climfveqf 45661 climfveqmpt3 45663 climeldmeqf 45664 climeqf 45669 climeldmeqmpt3 45670 limsupubuzlem 45693 limsupequz 45704 dvnmptdivc 45919 dvmptfprod 45926 stoweidlem18 45999 stoweidlem31 46012 stoweidlem55 46036 stoweidlem59 46040 sge0iunmpt 46399 sge0reuz 46428 iundjiun 46441 hoicvrrex 46537 ovnhoilem1 46582 ovnlecvr2 46591 opnvonmbllem1 46613 vonioo 46663 vonicc 46666 sssmf 46719 smflim 46758 smfpimcclem 46788 smfpimcc 46789 cfsetsnfsetf 47042 ovmpordxf 48323 |
| Copyright terms: Public domain | W3C validator |