| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2902 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: nfeq1 2907 nfeq2 2909 nfne 3026 raleqf 3326 rexeqfOLD 3328 rmoeq1f 3392 rabeqf 3437 csbhypf 3887 sbceqg 4371 nffn 6599 nffo 6753 fvmptd3f 6965 mpteqb 6969 fvmptf 6971 eqfnfv2f 6989 dff13f 7212 ovmpos 7517 ov2gf 7518 ovmpodxf 7519 ovmpodf 7525 eqerlem 8683 seqof2 14001 sumeq2ii 15635 sumss 15666 fsumadd 15682 fsummulc2 15726 fsumrelem 15749 prodeq1f 15848 prodeq2ii 15853 fprodmul 15902 fproddiv 15903 txcnp 23483 ptcnplem 23484 cnmpt11 23526 cnmpt21 23534 cnmptcom 23541 mbfeqalem1 25518 mbflim 25545 itgeq1f 25648 itgeq1fOLD 25649 itgeqa 25691 dvmptfsum 25855 ulmss 26282 leibpi 26828 o1cxp 26861 lgseisenlem2 27263 nosupbnd1 27602 2ndresdju 32546 aciunf1lem 32559 sigapildsys 34125 bnj1316 34783 bnj1446 35008 bnj1447 35009 bnj1448 35010 bnj1519 35028 bnj1520 35029 bnj1529 35033 subtr 36275 subtr2 36276 bj-sbeqALT 36861 poimirlem25 37612 iuneq2f 38123 mpobi123f 38129 mptbi12f 38133 dvdsrabdioph 42771 fphpd 42777 mnringmulrcld 44190 fvelrnbf 44985 refsum2cnlem1 45004 elrnmpt1sf 45156 choicefi 45167 axccdom 45189 uzublem 45399 fsumf1of 45545 fmuldfeq 45554 mccl 45569 climmulf 45575 climexp 45576 climsuse 45579 climrecf 45580 climaddf 45586 mullimc 45587 neglimc 45618 addlimc 45619 0ellimcdiv 45620 climeldmeqmpt 45639 climfveqmpt 45642 climfveqf 45651 climfveqmpt3 45653 climeldmeqf 45654 climeqf 45659 climeldmeqmpt3 45660 limsupubuzlem 45683 limsupequz 45694 dvnmptdivc 45909 dvmptfprod 45916 stoweidlem18 45989 stoweidlem31 46002 stoweidlem55 46026 stoweidlem59 46030 sge0iunmpt 46389 sge0reuz 46418 iundjiun 46431 hoicvrrex 46527 ovnhoilem1 46572 ovnlecvr2 46581 opnvonmbllem1 46603 vonioo 46653 vonicc 46656 sssmf 46709 smflim 46748 smfpimcclem 46778 smfpimcc 46779 cfsetsnfsetf 47032 ovmpordxf 48300 |
| Copyright terms: Public domain | W3C validator |