| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2902 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 |
| This theorem is referenced by: nfeq1 2907 nfeq2 2909 nfne 3026 raleqf 3326 rexeqfOLD 3328 rmoeq1f 3392 rabeqf 3437 csbhypf 3887 sbceqg 4371 nffn 6599 nffo 6753 fvmptd3f 6965 mpteqb 6969 fvmptf 6971 eqfnfv2f 6989 dff13f 7212 ovmpos 7517 ov2gf 7518 ovmpodxf 7519 ovmpodf 7525 eqerlem 8683 seqof2 14001 sumeq2ii 15635 sumss 15666 fsumadd 15682 fsummulc2 15726 fsumrelem 15749 prodeq1f 15848 prodeq2ii 15853 fprodmul 15902 fproddiv 15903 txcnp 23540 ptcnplem 23541 cnmpt11 23583 cnmpt21 23591 cnmptcom 23598 mbfeqalem1 25575 mbflim 25602 itgeq1f 25705 itgeq1fOLD 25706 itgeqa 25748 dvmptfsum 25912 ulmss 26339 leibpi 26885 o1cxp 26918 lgseisenlem2 27320 nosupbnd1 27659 2ndresdju 32623 aciunf1lem 32636 sigapildsys 34145 bnj1316 34803 bnj1446 35028 bnj1447 35029 bnj1448 35030 bnj1519 35048 bnj1520 35049 bnj1529 35053 subtr 36295 subtr2 36296 bj-sbeqALT 36881 poimirlem25 37632 iuneq2f 38143 mpobi123f 38149 mptbi12f 38153 dvdsrabdioph 42791 fphpd 42797 mnringmulrcld 44210 fvelrnbf 45005 refsum2cnlem1 45024 elrnmpt1sf 45176 choicefi 45187 axccdom 45209 uzublem 45419 fsumf1of 45565 fmuldfeq 45574 mccl 45589 climmulf 45595 climexp 45596 climsuse 45599 climrecf 45600 climaddf 45606 mullimc 45607 neglimc 45638 addlimc 45639 0ellimcdiv 45640 climeldmeqmpt 45659 climfveqmpt 45662 climfveqf 45671 climfveqmpt3 45673 climeldmeqf 45674 climeqf 45679 climeldmeqmpt3 45680 limsupubuzlem 45703 limsupequz 45714 dvnmptdivc 45929 dvmptfprod 45936 stoweidlem18 46009 stoweidlem31 46022 stoweidlem55 46046 stoweidlem59 46050 sge0iunmpt 46409 sge0reuz 46438 iundjiun 46451 hoicvrrex 46547 ovnhoilem1 46592 ovnlecvr2 46601 opnvonmbllem1 46623 vonioo 46673 vonicc 46676 sssmf 46729 smflim 46768 smfpimcclem 46798 smfpimcc 46799 cfsetsnfsetf 47052 ovmpordxf 48320 |
| Copyright terms: Public domain | W3C validator |