![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
5 | 2, 4 | nfeqd 2976 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
6 | 5 | mptru 1666 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ⊤wtru 1659 Ⅎwnf 1884 Ⅎwnfc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-cleq 2817 df-nfc 2957 |
This theorem is referenced by: nfeq1 2982 nfeq2 2984 nfne 3098 raleqf 3345 rexeqf 3346 reueq1f 3347 rmoeq1f 3348 rabeqf 3402 csbhypf 3775 sbceqg 4207 nffn 6219 nffo 6351 fvmptd3f 6541 mpteqb 6545 fvmptf 6547 eqfnfv2f 6563 dff13f 6767 ovmpt2s 7043 ov2gf 7044 ovmpt2dxf 7045 ovmpt2df 7051 eqerlem 8042 seqof2 13152 sumeq2ii 14799 sumss 14831 fsumadd 14846 fsummulc2 14889 fsumrelem 14912 prodeq1f 15010 prodeq2ii 15015 fprodmul 15062 fproddiv 15063 fprodle 15098 txcnp 21793 ptcnplem 21794 cnmpt11 21836 cnmpt21 21844 cnmptcom 21851 mbfeqalem1 23806 mbflim 23833 itgeq1f 23936 itgeqa 23978 dvmptfsum 24136 ulmss 24549 leibpi 25081 o1cxp 25113 lgseisenlem2 25513 fmptcof2 30005 aciunf1lem 30010 sigapildsys 30769 bnj1316 31436 bnj1446 31658 bnj1447 31659 bnj1448 31660 bnj1519 31678 bnj1520 31679 bnj1529 31683 nosupbnd1 32398 subtr 32846 subtr2 32847 bj-sbeqALT 33415 poimirlem25 33977 iuneq2f 34502 mpt2bi123f 34510 mptbi12f 34514 dvdsrabdioph 38217 fphpd 38223 fvelrnbf 39994 refsum2cnlem1 40013 dffo3f 40171 elrnmptf 40174 disjrnmpt2 40182 disjinfi 40187 choicefi 40197 axccdom 40221 fvelimad 40258 uzublem 40451 fsumf1of 40600 fmuldfeq 40609 mccl 40624 climmulf 40630 climexp 40631 climsuse 40634 climrecf 40635 climaddf 40641 mullimc 40642 neglimc 40673 addlimc 40674 0ellimcdiv 40675 climeldmeqmpt 40694 climfveqmpt 40697 climfveqf 40706 climfveqmpt3 40708 climeldmeqf 40709 climeqf 40714 climeldmeqmpt3 40715 limsupubuzlem 40738 limsupequz 40749 dvnmptdivc 40947 dvmptfprod 40954 dvnprodlem1 40955 stoweidlem18 41028 stoweidlem31 41041 stoweidlem55 41065 stoweidlem59 41069 sge0f1o 41389 sge0iunmpt 41425 sge0reuz 41454 iundjiun 41467 hoicvrrex 41563 ovnhoilem1 41608 ovnlecvr2 41617 opnvonmbllem1 41639 vonioo 41689 vonicc 41692 sssmf 41740 smflim 41778 smfpimcclem 41806 smfpimcc 41807 ovmpt2rdxf 42963 |
Copyright terms: Public domain | W3C validator |