| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
| Ref | Expression |
|---|---|
| nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
| nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 5 | 2, 4 | nfeqd 2910 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-nfc 2886 |
| This theorem is referenced by: nfeq1 2915 nfeq2 2917 nfne 3034 raleqf 3339 rexeqfOLD 3341 rmoeq1f 3408 rabeqf 3456 csbhypf 3907 sbceqg 4392 nffn 6642 nffo 6794 fvmptd3f 7006 mpteqb 7010 fvmptf 7012 eqfnfv2f 7030 dff13f 7253 ovmpos 7560 ov2gf 7561 ovmpodxf 7562 ovmpodf 7568 eqerlem 8759 seqof2 14083 sumeq2ii 15714 sumss 15745 fsumadd 15761 fsummulc2 15805 fsumrelem 15828 prodeq1f 15927 prodeq2ii 15932 fprodmul 15981 fproddiv 15982 txcnp 23563 ptcnplem 23564 cnmpt11 23606 cnmpt21 23614 cnmptcom 23621 mbfeqalem1 25599 mbflim 25626 itgeq1f 25729 itgeq1fOLD 25730 itgeqa 25772 dvmptfsum 25936 ulmss 26363 leibpi 26909 o1cxp 26942 lgseisenlem2 27344 nosupbnd1 27683 2ndresdju 32632 aciunf1lem 32645 sigapildsys 34198 bnj1316 34856 bnj1446 35081 bnj1447 35082 bnj1448 35083 bnj1519 35101 bnj1520 35102 bnj1529 35106 subtr 36337 subtr2 36338 bj-sbeqALT 36923 poimirlem25 37674 iuneq2f 38185 mpobi123f 38191 mptbi12f 38195 dvdsrabdioph 42800 fphpd 42806 mnringmulrcld 44219 fvelrnbf 45009 refsum2cnlem1 45028 elrnmpt1sf 45180 choicefi 45191 axccdom 45213 uzublem 45424 fsumf1of 45570 fmuldfeq 45579 mccl 45594 climmulf 45600 climexp 45601 climsuse 45604 climrecf 45605 climaddf 45611 mullimc 45612 neglimc 45643 addlimc 45644 0ellimcdiv 45645 climeldmeqmpt 45664 climfveqmpt 45667 climfveqf 45676 climfveqmpt3 45678 climeldmeqf 45679 climeqf 45684 climeldmeqmpt3 45685 limsupubuzlem 45708 limsupequz 45719 dvnmptdivc 45934 dvmptfprod 45941 stoweidlem18 46014 stoweidlem31 46027 stoweidlem55 46051 stoweidlem59 46055 sge0iunmpt 46414 sge0reuz 46443 iundjiun 46456 hoicvrrex 46552 ovnhoilem1 46597 ovnlecvr2 46606 opnvonmbllem1 46628 vonioo 46678 vonicc 46681 sssmf 46734 smflim 46773 smfpimcclem 46803 smfpimcc 46804 cfsetsnfsetf 47054 ovmpordxf 48281 |
| Copyright terms: Public domain | W3C validator |