![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
5 | 2, 4 | nfeqd 2919 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
6 | 5 | mptru 1544 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 Ⅎwnf 1781 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-nfc 2895 |
This theorem is referenced by: nfeq1 2924 nfeq2 2926 nfne 3049 raleqf 3361 rexeqfOLD 3363 rmoeq1f 3431 rabeqf 3480 csbhypf 3950 sbceqg 4435 nffn 6678 nffo 6833 fvmptd3f 7044 mpteqb 7048 fvmptf 7050 eqfnfv2f 7068 dff13f 7293 ovmpos 7598 ov2gf 7599 ovmpodxf 7600 ovmpodf 7606 eqerlem 8798 seqof2 14111 sumeq2ii 15741 sumss 15772 fsumadd 15788 fsummulc2 15832 fsumrelem 15855 prodeq1f 15954 prodeq2ii 15959 fprodmul 16008 fproddiv 16009 txcnp 23649 ptcnplem 23650 cnmpt11 23692 cnmpt21 23700 cnmptcom 23707 mbfeqalem1 25695 mbflim 25722 itgeq1f 25826 itgeq1fOLD 25827 itgeqa 25869 dvmptfsum 26033 ulmss 26458 leibpi 27003 o1cxp 27036 lgseisenlem2 27438 nosupbnd1 27777 2ndresdju 32667 aciunf1lem 32680 sigapildsys 34126 bnj1316 34796 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1519 35041 bnj1520 35042 bnj1529 35046 subtr 36280 subtr2 36281 bj-sbeqALT 36866 poimirlem25 37605 iuneq2f 38116 mpobi123f 38122 mptbi12f 38126 dvdsrabdioph 42766 fphpd 42772 mnringmulrcld 44197 fvelrnbf 44918 refsum2cnlem1 44937 elrnmpt1sf 45096 choicefi 45107 axccdom 45129 uzublem 45345 fsumf1of 45495 fmuldfeq 45504 mccl 45519 climmulf 45525 climexp 45526 climsuse 45529 climrecf 45530 climaddf 45536 mullimc 45537 neglimc 45568 addlimc 45569 0ellimcdiv 45570 climeldmeqmpt 45589 climfveqmpt 45592 climfveqf 45601 climfveqmpt3 45603 climeldmeqf 45604 climeqf 45609 climeldmeqmpt3 45610 limsupubuzlem 45633 limsupequz 45644 dvnmptdivc 45859 dvmptfprod 45866 dvnprodlem1 45867 stoweidlem18 45939 stoweidlem31 45952 stoweidlem55 45976 stoweidlem59 45980 sge0f1o 46303 sge0iunmpt 46339 sge0reuz 46368 iundjiun 46381 hoicvrrex 46477 ovnhoilem1 46522 ovnlecvr2 46531 opnvonmbllem1 46553 vonioo 46603 vonicc 46606 sssmf 46659 smflim 46698 smfpimcclem 46728 smfpimcc 46729 cfsetsnfsetf 46973 ovmpordxf 48063 |
Copyright terms: Public domain | W3C validator |