Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
5 | 2, 4 | nfeqd 2918 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
6 | 5 | mptru 1546 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 Ⅎwnf 1786 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2731 df-nfc 2890 |
This theorem is referenced by: nfeq1 2923 nfeq2 2925 nfne 3046 raleqf 3333 rexeqf 3334 reueq1f 3335 rmoeq1f 3336 rabeqf 3416 csbhypf 3862 sbceqg 4344 nffn 6541 nffo 6696 fvmptd3f 6899 mpteqb 6903 fvmptf 6905 eqfnfv2f 6922 dff13f 7138 ovmpos 7430 ov2gf 7431 ovmpodxf 7432 ovmpodf 7438 eqerlem 8541 seqof2 13790 sumeq2ii 15414 sumss 15445 fsumadd 15461 fsummulc2 15505 fsumrelem 15528 prodeq1f 15627 prodeq2ii 15632 fprodmul 15679 fproddiv 15680 txcnp 22780 ptcnplem 22781 cnmpt11 22823 cnmpt21 22831 cnmptcom 22838 mbfeqalem1 24814 mbflim 24841 itgeq1f 24945 itgeqa 24987 dvmptfsum 25148 ulmss 25565 leibpi 26101 o1cxp 26133 lgseisenlem2 26533 2ndresdju 30995 aciunf1lem 31008 sigapildsys 32139 bnj1316 32809 bnj1446 33034 bnj1447 33035 bnj1448 33036 bnj1519 33054 bnj1520 33055 bnj1529 33059 nosupbnd1 33926 subtr 34512 subtr2 34513 bj-sbeqALT 35094 poimirlem25 35811 iuneq2f 36323 mpobi123f 36329 mptbi12f 36333 dvdsrabdioph 40639 fphpd 40645 mnringmulrcld 41853 fvelrnbf 42568 refsum2cnlem1 42587 elrnmpt1sf 42734 choicefi 42747 axccdom 42769 uzublem 42977 fsumf1of 43122 fmuldfeq 43131 mccl 43146 climmulf 43152 climexp 43153 climsuse 43156 climrecf 43157 climaddf 43163 mullimc 43164 neglimc 43195 addlimc 43196 0ellimcdiv 43197 climeldmeqmpt 43216 climfveqmpt 43219 climfveqf 43228 climfveqmpt3 43230 climeldmeqf 43231 climeqf 43236 climeldmeqmpt3 43237 limsupubuzlem 43260 limsupequz 43271 dvnmptdivc 43486 dvmptfprod 43493 dvnprodlem1 43494 stoweidlem18 43566 stoweidlem31 43579 stoweidlem55 43603 stoweidlem59 43607 sge0f1o 43927 sge0iunmpt 43963 sge0reuz 43992 iundjiun 44005 hoicvrrex 44101 ovnhoilem1 44146 ovnlecvr2 44155 opnvonmbllem1 44177 vonioo 44227 vonicc 44230 sssmf 44283 smflim 44322 smfpimcclem 44351 smfpimcc 44352 cfsetsnfsetf 44563 ovmpordxf 45685 |
Copyright terms: Public domain | W3C validator |