Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
5 | 2, 4 | nfeqd 2916 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
6 | 5 | mptru 1546 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 Ⅎwnf 1787 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-nfc 2888 |
This theorem is referenced by: nfeq1 2921 nfeq2 2923 nfne 3044 raleqf 3323 rexeqf 3324 reueq1f 3325 rmoeq1f 3326 rabeqf 3405 csbhypf 3857 sbceqg 4340 nffn 6516 nffo 6671 fvmptd3f 6872 mpteqb 6876 fvmptf 6878 eqfnfv2f 6895 dff13f 7110 ovmpos 7399 ov2gf 7400 ovmpodxf 7401 ovmpodf 7407 eqerlem 8490 seqof2 13709 sumeq2ii 15333 sumss 15364 fsumadd 15380 fsummulc2 15424 fsumrelem 15447 prodeq1f 15546 prodeq2ii 15551 fprodmul 15598 fproddiv 15599 txcnp 22679 ptcnplem 22680 cnmpt11 22722 cnmpt21 22730 cnmptcom 22737 mbfeqalem1 24710 mbflim 24737 itgeq1f 24841 itgeqa 24883 dvmptfsum 25044 ulmss 25461 leibpi 25997 o1cxp 26029 lgseisenlem2 26429 2ndresdju 30887 aciunf1lem 30901 sigapildsys 32030 bnj1316 32700 bnj1446 32925 bnj1447 32926 bnj1448 32927 bnj1519 32945 bnj1520 32946 bnj1529 32950 nosupbnd1 33844 subtr 34430 subtr2 34431 bj-sbeqALT 35012 poimirlem25 35729 iuneq2f 36241 mpobi123f 36247 mptbi12f 36251 dvdsrabdioph 40548 fphpd 40554 mnringmulrcld 41735 fvelrnbf 42450 refsum2cnlem1 42469 elrnmpt1sf 42616 choicefi 42629 axccdom 42651 uzublem 42860 fsumf1of 43005 fmuldfeq 43014 mccl 43029 climmulf 43035 climexp 43036 climsuse 43039 climrecf 43040 climaddf 43046 mullimc 43047 neglimc 43078 addlimc 43079 0ellimcdiv 43080 climeldmeqmpt 43099 climfveqmpt 43102 climfveqf 43111 climfveqmpt3 43113 climeldmeqf 43114 climeqf 43119 climeldmeqmpt3 43120 limsupubuzlem 43143 limsupequz 43154 dvnmptdivc 43369 dvmptfprod 43376 dvnprodlem1 43377 stoweidlem18 43449 stoweidlem31 43462 stoweidlem55 43486 stoweidlem59 43490 sge0f1o 43810 sge0iunmpt 43846 sge0reuz 43875 iundjiun 43888 hoicvrrex 43984 ovnhoilem1 44029 ovnlecvr2 44038 opnvonmbllem1 44060 vonioo 44110 vonicc 44113 sssmf 44161 smflim 44199 smfpimcclem 44227 smfpimcc 44228 cfsetsnfsetf 44439 ovmpordxf 45562 |
Copyright terms: Public domain | W3C validator |