![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeq | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by NM, 21-Jun-1993.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ Ⅎ𝑥𝐴 |
nfeq.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfeq | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfeq.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
5 | 2, 4 | nfeqd 2914 | . 2 ⊢ (⊤ → Ⅎ𝑥 𝐴 = 𝐵) |
6 | 5 | mptru 1549 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊤wtru 1543 Ⅎwnf 1786 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-cleq 2725 df-nfc 2886 |
This theorem is referenced by: nfeq1 2919 nfeq2 2921 nfne 3044 raleqf 3350 rexeqfOLD 3352 rmoeq1f 3421 rabeqf 3467 csbhypf 3923 sbceqg 4410 nffn 6649 nffo 6805 fvmptd3f 7014 mpteqb 7018 fvmptf 7020 eqfnfv2f 7037 dff13f 7255 ovmpos 7556 ov2gf 7557 ovmpodxf 7558 ovmpodf 7564 eqerlem 8737 seqof2 14026 sumeq2ii 15639 sumss 15670 fsumadd 15686 fsummulc2 15730 fsumrelem 15753 prodeq1f 15852 prodeq2ii 15857 fprodmul 15904 fproddiv 15905 txcnp 23124 ptcnplem 23125 cnmpt11 23167 cnmpt21 23175 cnmptcom 23182 mbfeqalem1 25158 mbflim 25185 itgeq1f 25289 itgeqa 25331 dvmptfsum 25492 ulmss 25909 leibpi 26447 o1cxp 26479 lgseisenlem2 26879 nosupbnd1 27217 2ndresdju 31874 aciunf1lem 31887 sigapildsys 33160 bnj1316 33831 bnj1446 34056 bnj1447 34057 bnj1448 34058 bnj1519 34076 bnj1520 34077 bnj1529 34081 subtr 35199 subtr2 35200 bj-sbeqALT 35780 poimirlem25 36513 iuneq2f 37024 mpobi123f 37030 mptbi12f 37034 dvdsrabdioph 41548 fphpd 41554 mnringmulrcld 42987 fvelrnbf 43702 refsum2cnlem1 43721 elrnmpt1sf 43887 choicefi 43899 axccdom 43921 uzublem 44140 fsumf1of 44290 fmuldfeq 44299 mccl 44314 climmulf 44320 climexp 44321 climsuse 44324 climrecf 44325 climaddf 44331 mullimc 44332 neglimc 44363 addlimc 44364 0ellimcdiv 44365 climeldmeqmpt 44384 climfveqmpt 44387 climfveqf 44396 climfveqmpt3 44398 climeldmeqf 44399 climeqf 44404 climeldmeqmpt3 44405 limsupubuzlem 44428 limsupequz 44439 dvnmptdivc 44654 dvmptfprod 44661 dvnprodlem1 44662 stoweidlem18 44734 stoweidlem31 44747 stoweidlem55 44771 stoweidlem59 44775 sge0f1o 45098 sge0iunmpt 45134 sge0reuz 45163 iundjiun 45176 hoicvrrex 45272 ovnhoilem1 45317 ovnlecvr2 45326 opnvonmbllem1 45348 vonioo 45398 vonicc 45401 sssmf 45454 smflim 45493 smfpimcclem 45523 smfpimcc 45524 cfsetsnfsetf 45768 ovmpordxf 47014 |
Copyright terms: Public domain | W3C validator |