Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.41t Structured version   Visualization version   GIF version

Theorem bj-19.41t 36251
Description: Closed form of 19.41 2224 from the same axioms as 19.41v 1946. The same is doable with 19.27 2216, 19.28 2217, 19.31 2223, 19.32 2222, 19.44 2226, 19.45 2227. (Contributed by BJ, 2-Dec-2023.)
Assertion
Ref Expression
bj-19.41t (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Proof of Theorem bj-19.41t
StepHypRef Expression
1 exancom 1857 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
2 bj-19.42t 36250 . . 3 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜓𝜑) ↔ (𝜓 ∧ ∃𝑥𝜑)))
31, 2bitrid 283 . 2 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (𝜓 ∧ ∃𝑥𝜑)))
43biancomd 463 1 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1774  Ⅎ'wnnf 36200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-bj-nnf 36201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator