Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.41t Structured version   Visualization version   GIF version

Theorem bj-19.41t 36797
Description: Closed form of 19.41 2236 from the same axioms as 19.41v 1949. The same is doable with 19.27 2228, 19.28 2229, 19.31 2235, 19.32 2234, 19.44 2238, 19.45 2239. (Contributed by BJ, 2-Dec-2023.)
Assertion
Ref Expression
bj-19.41t (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Proof of Theorem bj-19.41t
StepHypRef Expression
1 exancom 1861 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
2 bj-19.42t 36796 . . 3 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜓𝜑) ↔ (𝜓 ∧ ∃𝑥𝜑)))
31, 2bitrid 283 . 2 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (𝜓 ∧ ∃𝑥𝜑)))
43biancomd 463 1 (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  Ⅎ'wnnf 36746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-bj-nnf 36747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator