Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.41t | Structured version Visualization version GIF version |
Description: Closed form of 19.41 2231 from the same axioms as 19.41v 1954. The same is doable with 19.27 2223, 19.28 2224, 19.31 2230, 19.32 2229, 19.44 2233, 19.45 2234. (Contributed by BJ, 2-Dec-2023.) |
Ref | Expression |
---|---|
bj-19.41t | ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | bj-19.42t 34882 | . . 3 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∃𝑥𝜑))) | |
3 | 1, 2 | syl5bb 282 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜓 ∧ ∃𝑥𝜑))) |
4 | 3 | biancomd 463 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |