![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.41t | Structured version Visualization version GIF version |
Description: Closed form of 19.41 2224 from the same axioms as 19.41v 1946. The same is doable with 19.27 2216, 19.28 2217, 19.31 2223, 19.32 2222, 19.44 2226, 19.45 2227. (Contributed by BJ, 2-Dec-2023.) |
Ref | Expression |
---|---|
bj-19.41t | ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1857 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | bj-19.42t 36250 | . . 3 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∃𝑥𝜑))) | |
3 | 1, 2 | bitrid 283 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜓 ∧ ∃𝑥𝜑))) |
4 | 3 | biancomd 463 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1774 Ⅎ'wnnf 36200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-bj-nnf 36201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |