![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.41t | Structured version Visualization version GIF version |
Description: Closed form of 19.41 2228 from the same axioms as 19.41v 1953. The same is doable with 19.27 2220, 19.28 2221, 19.31 2227, 19.32 2226, 19.44 2230, 19.45 2231. (Contributed by BJ, 2-Dec-2023.) |
Ref | Expression |
---|---|
bj-19.41t | ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1864 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
2 | bj-19.42t 35737 | . . 3 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∃𝑥𝜑))) | |
3 | 1, 2 | bitrid 282 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜓 ∧ ∃𝑥𝜑))) |
4 | 3 | biancomd 464 | 1 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1781 Ⅎ'wnnf 35687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-bj-nnf 35688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |