Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvelimdv | Structured version Visualization version GIF version |
Description: Deduction form of dvelim 2451 with disjoint variable conditions. Uncurried
(imported) form of bj-dvelimdv1 34963. Typically, 𝑧 is a fresh
variable used for the implicit substitution hypothesis that results in
𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as
𝜓(𝑥, 𝑧)). So the theorem says that if x is
effectively free
in 𝜓(𝑥, 𝑧), then if x and y are not the same
variable, then
𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context
𝜑.
One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1918 can be replaced with nfal 2321 followed by nfn 1861. Remark: nfald 2326 uses ax-11 2156; it might be possible to inline and use ax11w 2128 instead, but there is still a use via 19.12 2325 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-dvelimdv.nf | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
bj-dvelimdv.is | ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-dvelimdv | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dvelimdv.is | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) | |
2 | 1 | equsalvw 2008 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜒) ↔ 𝜓) |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ ∀𝑧(𝑧 = 𝑦 → 𝜒)) |
4 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
5 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
6 | 4, 5 | nfan 1903 | . . 3 ⊢ Ⅎ𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
7 | nfeqf2 2377 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦) |
9 | bj-dvelimdv.nf | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒) |
11 | 8, 10 | nfimd 1898 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜒)) |
12 | 6, 11 | nfald 2326 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜒)) |
13 | 3, 12 | nfxfrd 1857 | 1 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |