![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvelimdv | Structured version Visualization version GIF version |
Description: Deduction form of dvelim 2450 with disjoint variable conditions. Uncurried
(imported) form of bj-dvelimdv1 35823. Typically, 𝑧 is a fresh
variable used for the implicit substitution hypothesis that results in
𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as
𝜓(𝑥, 𝑧)). So the theorem says that if x is
effectively free
in 𝜓(𝑥, 𝑧), then if x and y are not the same
variable, then
𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context
𝜑.
One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1917 can be replaced with nfal 2316 followed by nfn 1860. Remark: nfald 2321 uses ax-11 2154; it might be possible to inline and use ax11w 2126 instead, but there is still a use via 19.12 2320 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-dvelimdv.nf | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
bj-dvelimdv.is | ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-dvelimdv | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dvelimdv.is | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) | |
2 | 1 | equsalvw 2007 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜒) ↔ 𝜓) |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜓 ↔ ∀𝑧(𝑧 = 𝑦 → 𝜒)) |
4 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
5 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | |
6 | 4, 5 | nfan 1902 | . . 3 ⊢ Ⅎ𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
7 | nfeqf2 2376 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦) |
9 | bj-dvelimdv.nf | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒) |
11 | 8, 10 | nfimd 1897 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦 → 𝜒)) |
12 | 6, 11 | nfald 2321 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜒)) |
13 | 3, 12 | nfxfrd 1856 | 1 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |