Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvelimdv Structured version   Visualization version   GIF version

Theorem bj-dvelimdv 35035
Description: Deduction form of dvelim 2451 with disjoint variable conditions. Uncurried (imported) form of bj-dvelimdv1 35036. Typically, 𝑧 is a fresh variable used for the implicit substitution hypothesis that results in 𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as 𝜓(𝑥, 𝑧)). So the theorem says that if x is effectively free in 𝜓(𝑥, 𝑧), then if x and y are not the same variable, then 𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context 𝜑.

One can weaken the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use nonfreeness hypotheses instead of disjoint variable conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV (𝑥, 𝑧) since in the proof nfv 1917 can be replaced with nfal 2317 followed by nfn 1860.

Remark: nfald 2322 uses ax-11 2154; it might be possible to inline and use ax11w 2126 instead, but there is still a use via 19.12 2321 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

Hypotheses
Ref Expression
bj-dvelimdv.nf (𝜑 → Ⅎ𝑥𝜒)
bj-dvelimdv.is (𝑧 = 𝑦 → (𝜒𝜓))
Assertion
Ref Expression
bj-dvelimdv ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem bj-dvelimdv
StepHypRef Expression
1 bj-dvelimdv.is . . . 4 (𝑧 = 𝑦 → (𝜒𝜓))
21equsalvw 2007 . . 3 (∀𝑧(𝑧 = 𝑦𝜒) ↔ 𝜓)
32bicomi 223 . 2 (𝜓 ↔ ∀𝑧(𝑧 = 𝑦𝜒))
4 nfv 1917 . . . 4 𝑧𝜑
5 nfv 1917 . . . 4 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
64, 5nfan 1902 . . 3 𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
7 nfeqf2 2377 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
87adantl 482 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 = 𝑦)
9 bj-dvelimdv.nf . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
109adantr 481 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒)
118, 10nfimd 1897 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦𝜒))
126, 11nfald 2322 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑧(𝑧 = 𝑦𝜒))
133, 12nfxfrd 1856 1 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator