Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sngltagi | Structured version Visualization version GIF version |
Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-sngltagi | ⊢ (𝐴 ∈ sngl 𝐵 → 𝐴 ∈ tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglsstag 34913 | . 2 ⊢ sngl 𝐵 ⊆ tag 𝐵 | |
2 | 1 | sseli 3901 | 1 ⊢ (𝐴 ∈ sngl 𝐵 → 𝐴 ∈ tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 sngl bj-csngl 34897 tag bj-ctag 34906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3415 df-un 3876 df-in 3878 df-ss 3888 df-bj-tag 34907 |
This theorem is referenced by: bj-sngltag 34915 bj-tagci 34916 |
Copyright terms: Public domain | W3C validator |