Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagci Structured version   Visualization version   GIF version

Theorem bj-tagci 35076
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagci (𝐴𝐵 → {𝐴} ∈ tag 𝐵)

Proof of Theorem bj-tagci
StepHypRef Expression
1 bj-snglc 35061 . 2 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
2 bj-sngltagi 35074 . 2 ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵)
31, 2sylbi 220 1 (𝐴𝐵 → {𝐴} ∈ tag 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  {csn 4558  sngl bj-csngl 35057  tag bj-ctag 35066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rex 3070  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-sn 4559  df-pr 4561  df-bj-sngl 35058  df-bj-tag 35067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator