Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagci | Structured version Visualization version GIF version |
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagci | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglc 35061 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
2 | bj-sngltagi 35074 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
3 | 1, 2 | sylbi 220 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 {csn 4558 sngl bj-csngl 35057 tag bj-ctag 35066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rex 3070 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-sn 4559 df-pr 4561 df-bj-sngl 35058 df-bj-tag 35067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |