![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagci | Structured version Visualization version GIF version |
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagci | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglc 36937 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
2 | bj-sngltagi 36950 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4648 sngl bj-csngl 36933 tag bj-ctag 36942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-bj-sngl 36934 df-bj-tag 36943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |