Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagci Structured version   Visualization version   GIF version

Theorem bj-tagci 36945
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagci (𝐴𝐵 → {𝐴} ∈ tag 𝐵)

Proof of Theorem bj-tagci
StepHypRef Expression
1 bj-snglc 36930 . 2 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
2 bj-sngltagi 36943 . 2 ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵)
31, 2sylbi 217 1 (𝐴𝐵 → {𝐴} ∈ tag 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {csn 4585  sngl bj-csngl 36926  tag bj-ctag 36935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-un 3916  df-ss 3928  df-sn 4586  df-pr 4588  df-bj-sngl 36927  df-bj-tag 36936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator