![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagci | Structured version Visualization version GIF version |
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagci | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglc 36964 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
2 | bj-sngltagi 36977 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {csn 4634 sngl bj-csngl 36960 tag bj-ctag 36969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-v 3483 df-un 3971 df-ss 3983 df-sn 4635 df-pr 4637 df-bj-sngl 36961 df-bj-tag 36970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |