Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagci | Structured version Visualization version GIF version |
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagci | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglc 35159 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
2 | bj-sngltagi 35172 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {csn 4561 sngl bj-csngl 35155 tag bj-ctag 35164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-bj-sngl 35156 df-bj-tag 35165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |