| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagci | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-tagci | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglc 36952 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
| 2 | bj-sngltagi 36965 | . 2 ⊢ ({𝐴} ∈ sngl 𝐵 → {𝐴} ∈ tag 𝐵) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ tag 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4591 sngl bj-csngl 36948 tag bj-ctag 36957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-un 3921 df-ss 3933 df-sn 4592 df-pr 4594 df-bj-sngl 36949 df-bj-tag 36958 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |