| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfcf | Structured version Visualization version GIF version | ||
| Description: Version of df-nfc 2884 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.) |
| Ref | Expression |
|---|---|
| bj-nfcf.nf | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| bj-nfcf | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2884 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
| 2 | bj-nfcf.nf | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 2 | nfcri 2889 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
| 4 | 3 | nfnf 2325 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 5 | 4 | sb8f 2354 | . . 3 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴) |
| 6 | sbnf 2311 | . . . . 5 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴) | |
| 7 | clelsb1 2860 | . . . . . 6 ⊢ ([𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 8 | 7 | nfbii 1851 | . . . . 5 ⊢ (Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 9 | 6, 8 | bitri 275 | . . . 4 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 10 | 9 | albii 1818 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 11 | 5, 10 | bitri 275 | . 2 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 [wsb 2063 ∈ wcel 2107 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |