Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfcf | Structured version Visualization version GIF version |
Description: Version of df-nfc 2888 with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-nfcf.nf | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
bj-nfcf | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2888 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
2 | bj-nfcf.nf | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
3 | 2 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
4 | 3 | nfnf 2324 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑥 𝑧 ∈ 𝐴 |
5 | 4 | sb8v 2352 | . . 3 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴) |
6 | bj-sbnf 34951 | . . . . 5 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴) | |
7 | clelsb1 2866 | . . . . . 6 ⊢ ([𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
8 | 7 | nfbii 1855 | . . . . 5 ⊢ (Ⅎ𝑥[𝑦 / 𝑧]𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
9 | 6, 8 | bitri 274 | . . . 4 ⊢ ([𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴) |
10 | 9 | albii 1823 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑧]Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
11 | 5, 10 | bitri 274 | . 2 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
12 | 1, 11 | bitri 274 | 1 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |