Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj906 Structured version   Visualization version   GIF version

Theorem bnj906 34497
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj906 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))

Proof of Theorem bnj906
Dummy variables 𝑓 𝑖 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8654 . . . . . . . 8 1o ∈ ω
2 1n0 8502 . . . . . . . 8 1o ≠ ∅
3 eldifsn 4786 . . . . . . . 8 (1o ∈ (ω ∖ {∅}) ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 710 . . . . . . 7 1o ∈ (ω ∖ {∅})
54ne0ii 4333 . . . . . 6 (ω ∖ {∅}) ≠ ∅
6 biid 261 . . . . . . 7 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7 biid 261 . . . . . . 7 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
8 eqid 2727 . . . . . . 7 (ω ∖ {∅}) = (ω ∖ {∅})
96, 7, 8bnj852 34488 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛 ∈ (ω ∖ {∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
10 r19.2z 4490 . . . . . 6 (((ω ∖ {∅}) ≠ ∅ ∧ ∀𝑛 ∈ (ω ∖ {∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))) → ∃𝑛 ∈ (ω ∖ {∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
115, 9, 10sylancr 586 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑛 ∈ (ω ∖ {∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
12 euex 2566 . . . . 5 (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1311, 12bnj31 34286 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑛 ∈ (ω ∖ {∅})∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
14 rexcom4 3280 . . . 4 (∃𝑛 ∈ (ω ∖ {∅})∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∃𝑓𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1513, 14sylib 217 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑓𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
16 abid 2708 . . 3 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ↔ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1715, 16bnj1198 34362 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑓 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))})
18 simp2 1135 . . . . . . 7 ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
1918reximi 3079 . . . . . 6 (∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2016, 19sylbi 216 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
21 df-rex 3066 . . . . . 6 (∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ ∃𝑛(𝑛 ∈ (ω ∖ {∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
22 19.41v 1946 . . . . . . 7 (∃𝑛(𝑛 ∈ (ω ∖ {∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ↔ (∃𝑛 𝑛 ∈ (ω ∖ {∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
2322simprbi 496 . . . . . 6 (∃𝑛(𝑛 ∈ (ω ∖ {∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2421, 23sylbi 216 . . . . 5 (∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2520, 24syl 17 . . . 4 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
26 eqid 2727 . . . . . . 7 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
278, 26bnj900 34496 . . . . . 6 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∅ ∈ dom 𝑓)
28 fveq2 6891 . . . . . . 7 (𝑖 = ∅ → (𝑓𝑖) = (𝑓‘∅))
2928ssiun2s 5045 . . . . . 6 (∅ ∈ dom 𝑓 → (𝑓‘∅) ⊆ 𝑖 ∈ dom 𝑓(𝑓𝑖))
3027, 29syl 17 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) ⊆ 𝑖 ∈ dom 𝑓(𝑓𝑖))
31 ssiun2 5044 . . . . . 6 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖))
326, 7, 8, 26bnj882 34493 . . . . . 6 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
3331, 32sseqtrrdi 4029 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
3430, 33sstrd 3988 . . . 4 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) ⊆ trCl(𝑋, 𝐴, 𝑅))
3525, 34eqsstrrd 4017 . . 3 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
3635exlimiv 1926 . 2 (∃𝑓 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
3717, 36syl 17 1 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2557  {cab 2704  wne 2935  wral 3056  wrex 3065  cdif 3941  wss 3944  c0 4318  {csn 4624   ciun 4991  dom cdm 5672  suc csuc 6365   Fn wfn 6537  cfv 6542  ωcom 7864  1oc1o 8473   predc-bnj14 34255   FrSe w-bnj15 34259   trClc-bnj18 34261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-reg 9607  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-bnj17 34254  df-bnj14 34256  df-bnj13 34258  df-bnj15 34260  df-bnj18 34262
This theorem is referenced by:  bnj1137  34562  bnj1136  34564  bnj1175  34571  bnj1177  34573  bnj1413  34602  bnj1408  34603  bnj1417  34608  bnj1442  34616  bnj1452  34619
  Copyright terms: Public domain W3C validator