Step | Hyp | Ref
| Expression |
1 | | 1onn 8432 |
. . . . . . . 8
⊢
1o ∈ ω |
2 | | 1n0 8286 |
. . . . . . . 8
⊢
1o ≠ ∅ |
3 | | eldifsn 4717 |
. . . . . . . 8
⊢
(1o ∈ (ω ∖ {∅}) ↔ (1o
∈ ω ∧ 1o ≠ ∅)) |
4 | 1, 2, 3 | mpbir2an 707 |
. . . . . . 7
⊢
1o ∈ (ω ∖ {∅}) |
5 | 4 | ne0ii 4268 |
. . . . . 6
⊢ (ω
∖ {∅}) ≠ ∅ |
6 | | biid 260 |
. . . . . . 7
⊢ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
7 | | biid 260 |
. . . . . . 7
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
8 | | eqid 2738 |
. . . . . . 7
⊢ (ω
∖ {∅}) = (ω ∖ {∅}) |
9 | 6, 7, 8 | bnj852 32801 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑛 ∈ (ω ∖
{∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
10 | | r19.2z 4422 |
. . . . . 6
⊢
(((ω ∖ {∅}) ≠ ∅ ∧ ∀𝑛 ∈ (ω ∖
{∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) → ∃𝑛 ∈ (ω ∖
{∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
11 | 5, 9, 10 | sylancr 586 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑛 ∈ (ω ∖
{∅})∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
12 | | euex 2577 |
. . . . 5
⊢
(∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
13 | 11, 12 | bnj31 32598 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑛 ∈ (ω ∖
{∅})∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
14 | | rexcom4 3179 |
. . . 4
⊢
(∃𝑛 ∈
(ω ∖ {∅})∃𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∃𝑓∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
15 | 13, 14 | sylib 217 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑓∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
16 | | abid 2719 |
. . 3
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} ↔ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
17 | 15, 16 | bnj1198 32675 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∃𝑓 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}) |
18 | | simp2 1135 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
19 | 18 | reximi 3174 |
. . . . . 6
⊢
(∃𝑛 ∈
(ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) → ∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
20 | 16, 19 | sylbi 216 |
. . . . 5
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∃𝑛 ∈ (ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
21 | | df-rex 3069 |
. . . . . 6
⊢
(∃𝑛 ∈
(ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ ∃𝑛(𝑛 ∈ (ω ∖ {∅}) ∧
(𝑓‘∅) =
pred(𝑋, 𝐴, 𝑅))) |
22 | | 19.41v 1954 |
. . . . . . 7
⊢
(∃𝑛(𝑛 ∈ (ω ∖
{∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ↔ (∃𝑛 𝑛 ∈ (ω ∖ {∅}) ∧
(𝑓‘∅) =
pred(𝑋, 𝐴, 𝑅))) |
23 | 22 | simprbi 496 |
. . . . . 6
⊢
(∃𝑛(𝑛 ∈ (ω ∖
{∅}) ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
24 | 21, 23 | sylbi 216 |
. . . . 5
⊢
(∃𝑛 ∈
(ω ∖ {∅})(𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
25 | 20, 24 | syl 17 |
. . . 4
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
26 | | eqid 2738 |
. . . . . . 7
⊢ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} |
27 | 8, 26 | bnj900 32809 |
. . . . . 6
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∅ ∈ dom 𝑓) |
28 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = ∅ → (𝑓‘𝑖) = (𝑓‘∅)) |
29 | 28 | ssiun2s 4974 |
. . . . . 6
⊢ (∅
∈ dom 𝑓 → (𝑓‘∅) ⊆ ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
30 | 27, 29 | syl 17 |
. . . . 5
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) ⊆ ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
31 | | ssiun2 4973 |
. . . . . 6
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
32 | 6, 7, 8, 26 | bnj882 32806 |
. . . . . 6
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
33 | 31, 32 | sseqtrrdi 3968 |
. . . . 5
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
34 | 30, 33 | sstrd 3927 |
. . . 4
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → (𝑓‘∅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
35 | 25, 34 | eqsstrrd 3956 |
. . 3
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
36 | 35 | exlimiv 1934 |
. 2
⊢
(∃𝑓 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))} → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
37 | 17, 36 | syl 17 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |