Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcrii | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2139, ax-11 2156. (Revised by Gino Giotto, 23-May-2024.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcrii | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrii.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2893 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nf5ri 2191 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: nfcriOLDOLDOLD 2900 bnj1230 32682 bnj1000 32821 bnj1204 32892 bnj1307 32903 bnj1311 32904 bnj1398 32914 bnj1466 32933 bnj1467 32934 bnj1523 32951 |
Copyright terms: Public domain | W3C validator |