![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrii | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcrii | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrii.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2891 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nf5ri 2189 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2107 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-clel 2811 df-nfc 2886 |
This theorem is referenced by: nfcriOLDOLDOLD 2898 bnj1230 33813 bnj1000 33952 bnj1204 34023 bnj1307 34034 bnj1311 34035 bnj1398 34045 bnj1466 34064 bnj1467 34065 bnj1523 34082 |
Copyright terms: Public domain | W3C validator |