![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrii | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2139, ax-11 2155. (Revised by GG, 23-May-2024.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcrii | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrii.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2895 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nf5ri 2193 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2106 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 |
This theorem is referenced by: bnj1230 34795 bnj1000 34934 bnj1204 35005 bnj1307 35016 bnj1311 35017 bnj1398 35027 bnj1466 35046 bnj1467 35047 bnj1523 35064 |
Copyright terms: Public domain | W3C validator |