MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2898
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2139, ax-11 2155. (Revised by GG, 23-May-2024.)
Hypothesis
Ref Expression
nfcrii.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
StepHypRef Expression
1 nfcrii.1 . . 3 𝑥𝐴
21nfcri 2895 . 2 𝑥 𝑦𝐴
32nf5ri 2193 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2106  wnfc 2888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-clel 2814  df-nfc 2890
This theorem is referenced by:  bnj1230  34795  bnj1000  34934  bnj1204  35005  bnj1307  35016  bnj1311  35017  bnj1398  35027  bnj1466  35046  bnj1467  35047  bnj1523  35064
  Copyright terms: Public domain W3C validator