![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrii | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2130, ax-11 2147. (Revised by Gino Giotto, 23-May-2024.) |
Ref | Expression |
---|---|
nfcrii.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcrii | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcrii.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfcri 2885 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nf5ri 2181 | 1 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 ∈ wcel 2099 Ⅎwnfc 2878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-12 2164 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-nf 1779 df-clel 2805 df-nfc 2880 |
This theorem is referenced by: nfcriOLDOLDOLD 2892 bnj1230 34369 bnj1000 34508 bnj1204 34579 bnj1307 34590 bnj1311 34591 bnj1398 34601 bnj1466 34620 bnj1467 34621 bnj1523 34638 |
Copyright terms: Public domain | W3C validator |