MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2896
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2138, ax-11 2155. (Revised by Gino Giotto, 23-May-2024.)
Hypothesis
Ref Expression
nfcrii.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
StepHypRef Expression
1 nfcrii.1 . . 3 𝑥𝐴
21nfcri 2891 . 2 𝑥 𝑦𝐴
32nf5ri 2189 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wcel 2107  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787  df-clel 2811  df-nfc 2886
This theorem is referenced by:  nfcriOLDOLDOLD  2898  bnj1230  33813  bnj1000  33952  bnj1204  34023  bnj1307  34034  bnj1311  34035  bnj1398  34045  bnj1466  34064  bnj1467  34065  bnj1523  34082
  Copyright terms: Public domain W3C validator