MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2899
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2137, ax-11 2154. (Revised by Gino Giotto, 23-May-2024.)
Hypothesis
Ref Expression
nfcrii.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
StepHypRef Expression
1 nfcrii.1 . . 3 𝑥𝐴
21nfcri 2894 . 2 𝑥 𝑦𝐴
32nf5ri 2188 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-clel 2816  df-nfc 2889
This theorem is referenced by:  nfcriOLDOLDOLD  2901  bnj1230  32782  bnj1000  32921  bnj1204  32992  bnj1307  33003  bnj1311  33004  bnj1398  33014  bnj1466  33033  bnj1467  33034  bnj1523  33051
  Copyright terms: Public domain W3C validator