MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2890
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-10 2130, ax-11 2147. (Revised by Gino Giotto, 23-May-2024.)
Hypothesis
Ref Expression
nfcrii.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
StepHypRef Expression
1 nfcrii.1 . . 3 𝑥𝐴
21nfcri 2885 . 2 𝑥 𝑦𝐴
32nf5ri 2181 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wcel 2099  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-12 2164
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-nf 1779  df-clel 2805  df-nfc 2880
This theorem is referenced by:  nfcriOLDOLDOLD  2892  bnj1230  34369  bnj1000  34508  bnj1204  34579  bnj1307  34590  bnj1311  34591  bnj1398  34601  bnj1466  34620  bnj1467  34621  bnj1523  34638
  Copyright terms: Public domain W3C validator