Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1497 Structured version   Visualization version   GIF version

Theorem bnj1497 35072
Description: Technical lemma for bnj60 35074. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1497.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1497.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1497.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1497 𝑔𝐶 Fun 𝑔
Distinct variable groups:   𝐶,𝑔   𝑓,𝑑   𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑓,𝑔,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑓,𝑔,𝑑)   𝑌(𝑥,𝑓,𝑔,𝑑)

Proof of Theorem bnj1497
StepHypRef Expression
1 bnj1497.3 . . . . . 6 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
21bnj1317 34833 . . . . 5 (𝑔𝐶 → ∀𝑓 𝑔𝐶)
32nf5i 2149 . . . 4 𝑓 𝑔𝐶
4 nfv 1915 . . . 4 𝑓Fun 𝑔
53, 4nfim 1897 . . 3 𝑓(𝑔𝐶 → Fun 𝑔)
6 eleq1w 2814 . . . 4 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
7 funeq 6501 . . . 4 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
86, 7imbi12d 344 . . 3 (𝑓 = 𝑔 → ((𝑓𝐶 → Fun 𝑓) ↔ (𝑔𝐶 → Fun 𝑔)))
91bnj1436 34851 . . . . . 6 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
109bnj1299 34830 . . . . 5 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
11 fnfun 6581 . . . . 5 (𝑓 Fn 𝑑 → Fun 𝑓)
1210, 11bnj31 34731 . . . 4 (𝑓𝐶 → ∃𝑑𝐵 Fun 𝑓)
1312bnj1265 34824 . . 3 (𝑓𝐶 → Fun 𝑓)
145, 8, 13chvarfv 2243 . 2 (𝑔𝐶 → Fun 𝑔)
1514rgen 3049 1 𝑔𝐶 Fun 𝑔
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3897  cop 4579  cres 5616  Fun wfun 6475   Fn wfn 6476  cfv 6481   predc-bnj14 34700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-ss 3914  df-br 5090  df-opab 5152  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6483  df-fn 6484
This theorem is referenced by:  bnj60  35074
  Copyright terms: Public domain W3C validator