Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1497 Structured version   Visualization version   GIF version

Theorem bnj1497 35036
Description: Technical lemma for bnj60 35038. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1497.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1497.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1497.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj1497 𝑔𝐶 Fun 𝑔
Distinct variable groups:   𝐶,𝑔   𝑓,𝑑   𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔,𝑑)   𝐵(𝑥,𝑓,𝑔,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓,𝑔,𝑑)   𝐺(𝑥,𝑓,𝑔,𝑑)   𝑌(𝑥,𝑓,𝑔,𝑑)

Proof of Theorem bnj1497
StepHypRef Expression
1 bnj1497.3 . . . . . 6 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
21bnj1317 34797 . . . . 5 (𝑔𝐶 → ∀𝑓 𝑔𝐶)
32nf5i 2146 . . . 4 𝑓 𝑔𝐶
4 nfv 1913 . . . 4 𝑓Fun 𝑔
53, 4nfim 1895 . . 3 𝑓(𝑔𝐶 → Fun 𝑔)
6 eleq1w 2827 . . . 4 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
7 funeq 6598 . . . 4 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
86, 7imbi12d 344 . . 3 (𝑓 = 𝑔 → ((𝑓𝐶 → Fun 𝑓) ↔ (𝑔𝐶 → Fun 𝑔)))
91bnj1436 34815 . . . . . 6 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
109bnj1299 34794 . . . . 5 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
11 fnfun 6679 . . . . 5 (𝑓 Fn 𝑑 → Fun 𝑓)
1210, 11bnj31 34695 . . . 4 (𝑓𝐶 → ∃𝑑𝐵 Fun 𝑓)
1312bnj1265 34788 . . 3 (𝑓𝐶 → Fun 𝑓)
145, 8, 13chvarfv 2241 . 2 (𝑔𝐶 → Fun 𝑔)
1514rgen 3069 1 𝑔𝐶 Fun 𝑔
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976  cop 4654  cres 5702  Fun wfun 6567   Fn wfn 6568  cfv 6573   predc-bnj14 34664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-ss 3993  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575  df-fn 6576
This theorem is referenced by:  bnj60  35038
  Copyright terms: Public domain W3C validator