![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1497 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 35038. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1497.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1497.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1497.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
Ref | Expression |
---|---|
bnj1497 | ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1497.3 | . . . . . 6 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
2 | 1 | bnj1317 34797 | . . . . 5 ⊢ (𝑔 ∈ 𝐶 → ∀𝑓 𝑔 ∈ 𝐶) |
3 | 2 | nf5i 2146 | . . . 4 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
4 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑓Fun 𝑔 | |
5 | 3, 4 | nfim 1895 | . . 3 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐶 → Fun 𝑔) |
6 | eleq1w 2827 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
7 | funeq 6598 | . . . 4 ⊢ (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔)) | |
8 | 6, 7 | imbi12d 344 | . . 3 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐶 → Fun 𝑓) ↔ (𝑔 ∈ 𝐶 → Fun 𝑔))) |
9 | 1 | bnj1436 34815 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
10 | 9 | bnj1299 34794 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) |
11 | fnfun 6679 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
12 | 10, 11 | bnj31 34695 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) |
13 | 12 | bnj1265 34788 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) |
14 | 5, 8, 13 | chvarfv 2241 | . 2 ⊢ (𝑔 ∈ 𝐶 → Fun 𝑔) |
15 | 14 | rgen 3069 | 1 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 〈cop 4654 ↾ cres 5702 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 df-fn 6576 |
This theorem is referenced by: bnj60 35038 |
Copyright terms: Public domain | W3C validator |