![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1497 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 35054. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1497.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1497.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1497.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
Ref | Expression |
---|---|
bnj1497 | ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1497.3 | . . . . . 6 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
2 | 1 | bnj1317 34813 | . . . . 5 ⊢ (𝑔 ∈ 𝐶 → ∀𝑓 𝑔 ∈ 𝐶) |
3 | 2 | nf5i 2143 | . . . 4 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
4 | nfv 1911 | . . . 4 ⊢ Ⅎ𝑓Fun 𝑔 | |
5 | 3, 4 | nfim 1893 | . . 3 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐶 → Fun 𝑔) |
6 | eleq1w 2821 | . . . 4 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
7 | funeq 6587 | . . . 4 ⊢ (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔)) | |
8 | 6, 7 | imbi12d 344 | . . 3 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐶 → Fun 𝑓) ↔ (𝑔 ∈ 𝐶 → Fun 𝑔))) |
9 | 1 | bnj1436 34831 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
10 | 9 | bnj1299 34810 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) |
11 | fnfun 6668 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
12 | 10, 11 | bnj31 34711 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) |
13 | 12 | bnj1265 34804 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) |
14 | 5, 8, 13 | chvarfv 2237 | . 2 ⊢ (𝑔 ∈ 𝐶 → Fun 𝑔) |
15 | 14 | rgen 3060 | 1 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 ∀wral 3058 ∃wrex 3067 ⊆ wss 3962 〈cop 4636 ↾ cres 5690 Fun wfun 6556 Fn wfn 6557 ‘cfv 6562 predc-bnj14 34680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-ss 3979 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-fun 6564 df-fn 6565 |
This theorem is referenced by: bnj60 35054 |
Copyright terms: Public domain | W3C validator |