Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj937 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj937.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
bnj937 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj937.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | 19.9v 1988 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bnj1265 32692 bnj1379 32710 bnj852 32801 bnj1148 32876 bnj1154 32879 bnj1189 32889 bnj1245 32894 bnj1286 32899 bnj1311 32904 bnj1371 32909 bnj1374 32911 bnj1498 32941 bnj1514 32943 |
Copyright terms: Public domain | W3C validator |