![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj937 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj937.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
bnj937 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj937.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | 19.9v 1981 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: bnj1265 34805 bnj1379 34823 bnj852 34914 bnj1148 34989 bnj1154 34992 bnj1189 35002 bnj1245 35007 bnj1286 35012 bnj1311 35017 bnj1371 35022 bnj1374 35024 bnj1498 35054 bnj1514 35056 |
Copyright terms: Public domain | W3C validator |