| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj937 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj937.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| bnj937 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj937.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | 19.9v 1984 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bnj1265 34848 bnj1379 34866 bnj852 34957 bnj1148 35032 bnj1154 35035 bnj1189 35045 bnj1245 35050 bnj1286 35055 bnj1311 35060 bnj1371 35065 bnj1374 35067 bnj1498 35097 bnj1514 35099 |
| Copyright terms: Public domain | W3C validator |