Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj937 Structured version   Visualization version   GIF version

Theorem bnj937 31387
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj937.1 (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
bnj937 (𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bnj937
StepHypRef Expression
1 bnj937.1 . 2 (𝜑 → ∃𝑥𝜓)
2 19.9v 2086 . 2 (∃𝑥𝜓𝜓)
31, 2sylib 210 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077
This theorem depends on definitions:  df-bi 199  df-ex 1881
This theorem is referenced by:  bnj1265  31428  bnj1379  31446  bnj852  31536  bnj1148  31609  bnj1154  31612  bnj1189  31622  bnj1245  31627  bnj1286  31632  bnj1311  31637  bnj1371  31642  bnj1374  31644  bnj1498  31674  bnj1514  31676
  Copyright terms: Public domain W3C validator