Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1400 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1400.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1400 | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmuni 5812 | . 2 ⊢ dom ∪ 𝐴 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 | |
2 | df-iun 4923 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} | |
3 | df-iun 4923 | . . . 4 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} | |
4 | bnj1400.1 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
5 | 4 | nfcii 2890 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 |
6 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
7 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑧 𝑦 ∈ dom 𝑥 | |
8 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ dom 𝑧 | |
9 | dmeq 5801 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
10 | 9 | eleq2d 2824 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑦 ∈ dom 𝑥 ↔ 𝑦 ∈ dom 𝑧)) |
11 | 5, 6, 7, 8, 10 | cbvrexfw 3360 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧) |
12 | 11 | abbii 2809 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} |
13 | 3, 12 | eqtr4i 2769 | . . 3 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} |
14 | 2, 13 | eqtr4i 2769 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 |
15 | 1, 14 | eqtr4i 2769 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ∪ cuni 4836 ∪ ciun 4921 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-dm 5590 |
This theorem is referenced by: bnj1398 32914 bnj1450 32930 bnj1498 32941 bnj1501 32947 |
Copyright terms: Public domain | W3C validator |