| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1400 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1400.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| bnj1400 | ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuni 5868 | . 2 ⊢ dom ∪ 𝐴 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 | |
| 2 | df-iun 4953 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} | |
| 3 | df-iun 4953 | . . . 4 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} | |
| 4 | bnj1400.1 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 5 | 4 | nfcii 2880 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 |
| 6 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 7 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧 𝑦 ∈ dom 𝑥 | |
| 8 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ dom 𝑧 | |
| 9 | dmeq 5857 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧) | |
| 10 | 9 | eleq2d 2814 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑦 ∈ dom 𝑥 ↔ 𝑦 ∈ dom 𝑧)) |
| 11 | 5, 6, 7, 8, 10 | cbvrexfw 3277 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧) |
| 12 | 11 | abbii 2796 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ dom 𝑧} |
| 13 | 3, 12 | eqtr4i 2755 | . . 3 ⊢ ∪ 𝑧 ∈ 𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝑥} |
| 14 | 2, 13 | eqtr4i 2755 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 dom 𝑥 = ∪ 𝑧 ∈ 𝐴 dom 𝑧 |
| 15 | 1, 14 | eqtr4i 2755 | 1 ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ cuni 4867 ∪ ciun 4951 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-dm 5641 |
| This theorem is referenced by: bnj1398 35017 bnj1450 35033 bnj1498 35044 bnj1501 35050 |
| Copyright terms: Public domain | W3C validator |