Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1400 Structured version   Visualization version   GIF version

Theorem bnj1400 34132
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1400.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
bnj1400 dom 𝐴 = 𝑥𝐴 dom 𝑥
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bnj1400
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dmuni 5914 . 2 dom 𝐴 = 𝑧𝐴 dom 𝑧
2 df-iun 4999 . . 3 𝑥𝐴 dom 𝑥 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥}
3 df-iun 4999 . . . 4 𝑧𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑧𝐴 𝑦 ∈ dom 𝑧}
4 bnj1400.1 . . . . . . 7 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
54nfcii 2887 . . . . . 6 𝑥𝐴
6 nfcv 2903 . . . . . 6 𝑧𝐴
7 nfv 1917 . . . . . 6 𝑧 𝑦 ∈ dom 𝑥
8 nfv 1917 . . . . . 6 𝑥 𝑦 ∈ dom 𝑧
9 dmeq 5903 . . . . . . 7 (𝑥 = 𝑧 → dom 𝑥 = dom 𝑧)
109eleq2d 2819 . . . . . 6 (𝑥 = 𝑧 → (𝑦 ∈ dom 𝑥𝑦 ∈ dom 𝑧))
115, 6, 7, 8, 10cbvrexfw 3302 . . . . 5 (∃𝑥𝐴 𝑦 ∈ dom 𝑥 ↔ ∃𝑧𝐴 𝑦 ∈ dom 𝑧)
1211abbii 2802 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥} = {𝑦 ∣ ∃𝑧𝐴 𝑦 ∈ dom 𝑧}
133, 12eqtr4i 2763 . . 3 𝑧𝐴 dom 𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ dom 𝑥}
142, 13eqtr4i 2763 . 2 𝑥𝐴 dom 𝑥 = 𝑧𝐴 dom 𝑧
151, 14eqtr4i 2763 1 dom 𝐴 = 𝑥𝐴 dom 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wrex 3070   cuni 4908   ciun 4997  dom cdm 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-dm 5686
This theorem is referenced by:  bnj1398  34331  bnj1450  34347  bnj1498  34358  bnj1501  34364
  Copyright terms: Public domain W3C validator