| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj523 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34957. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj523.1 | ⊢ (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj523.2 | ⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) |
| bnj523.3 | ⊢ 𝑀 ∈ V |
| Ref | Expression |
|---|---|
| bnj523 | ⊢ (𝜑′ ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj523.2 | . 2 ⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) | |
| 2 | bnj523.1 | . . 3 ⊢ (𝜑 ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 3 | 2 | sbcbii 3827 | . 2 ⊢ ([𝑀 / 𝑛]𝜑 ↔ [𝑀 / 𝑛](𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 4 | bnj523.3 | . . 3 ⊢ 𝑀 ∈ V | |
| 5 | 4 | bnj525 34774 | . 2 ⊢ ([𝑀 / 𝑛](𝐹‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 6 | 1, 3, 5 | 3bitri 297 | 1 ⊢ (𝜑′ ↔ (𝐹‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 [wsbc 3770 ∅c0 4313 ‘cfv 6536 predc-bnj14 34724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: bnj600 34955 bnj908 34967 bnj934 34971 |
| Copyright terms: Public domain | W3C validator |