| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj526 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34933. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj526.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj526.2 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) |
| bnj526.3 | ⊢ 𝐺 ∈ V |
| Ref | Expression |
|---|---|
| bnj526 | ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj526.2 | . 2 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | |
| 2 | bnj526.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 3 | 2 | sbcbii 3793 | . 2 ⊢ ([𝐺 / 𝑓]𝜑 ↔ [𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 4 | bnj526.3 | . . 3 ⊢ 𝐺 ∈ V | |
| 5 | fveq1 6821 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓‘∅) = (𝐺‘∅)) | |
| 6 | 5 | eqeq1d 2733 | . . 3 ⊢ (𝑓 = 𝐺 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 7 | 4, 6 | sbcie 3778 | . 2 ⊢ ([𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 8 | 1, 3, 7 | 3bitri 297 | 1 ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 ∅c0 4280 ‘cfv 6481 predc-bnj14 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-ss 3914 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: bnj607 34928 |
| Copyright terms: Public domain | W3C validator |