Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj526 Structured version   Visualization version   GIF version

Theorem bnj526 32868
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj526.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj526.2 (𝜑″[𝐺 / 𝑓]𝜑)
bnj526.3 𝐺 ∈ V
Assertion
Ref Expression
bnj526 (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐺   𝑅,𝑓   𝑓,𝑋
Allowed substitution hints:   𝜑(𝑓)   𝜑″(𝑓)

Proof of Theorem bnj526
StepHypRef Expression
1 bnj526.2 . 2 (𝜑″[𝐺 / 𝑓]𝜑)
2 bnj526.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
32sbcbii 3776 . 2 ([𝐺 / 𝑓]𝜑[𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
4 bnj526.3 . . 3 𝐺 ∈ V
5 fveq1 6773 . . . 4 (𝑓 = 𝐺 → (𝑓‘∅) = (𝐺‘∅))
65eqeq1d 2740 . . 3 (𝑓 = 𝐺 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)))
74, 6sbcie 3759 . 2 ([𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))
81, 3, 73bitri 297 1 (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  [wsbc 3716  c0 4256  cfv 6433   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sbc 3717  df-in 3894  df-ss 3904  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj607  32896
  Copyright terms: Public domain W3C validator