|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj526 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34936. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj526.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| bnj526.2 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | 
| bnj526.3 | ⊢ 𝐺 ∈ V | 
| Ref | Expression | 
|---|---|
| bnj526 | ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj526.2 | . 2 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | |
| 2 | bnj526.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 3 | 2 | sbcbii 3845 | . 2 ⊢ ([𝐺 / 𝑓]𝜑 ↔ [𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| 4 | bnj526.3 | . . 3 ⊢ 𝐺 ∈ V | |
| 5 | fveq1 6904 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓‘∅) = (𝐺‘∅)) | |
| 6 | 5 | eqeq1d 2738 | . . 3 ⊢ (𝑓 = 𝐺 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))) | 
| 7 | 4, 6 | sbcie 3829 | . 2 ⊢ ([𝐺 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| 8 | 1, 3, 7 | 3bitri 297 | 1 ⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3479 [wsbc 3787 ∅c0 4332 ‘cfv 6560 predc-bnj14 34703 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-sbc 3788 df-ss 3967 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 | 
| This theorem is referenced by: bnj607 34931 | 
| Copyright terms: Public domain | W3C validator |