Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breq1dd Structured version   Visualization version   GIF version

Theorem breq1dd 32569
Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
breq1dd.1 (𝜑𝐴 = 𝐵)
breq1dd.2 (𝜑𝐴𝑅𝐶)
Assertion
Ref Expression
breq1dd (𝜑𝐵𝑅𝐶)

Proof of Theorem breq1dd
StepHypRef Expression
1 breq1dd.2 . 2 (𝜑𝐴𝑅𝐶)
2 breq1dd.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 5105 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mpbid 232 1 (𝜑𝐵𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096
This theorem is referenced by:  mplvrpmfgalem  33564
  Copyright terms: Public domain W3C validator