| Step | Hyp | Ref
| Expression |
| 1 | | mplvrpmga.4 |
. . . 4
⊢ 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 3 | | simpr 484 |
. . . . . 6
⊢ ((𝑑 = 𝑄 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
| 4 | | coeq2 5805 |
. . . . . . 7
⊢ (𝑑 = 𝑄 → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑄)) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝑑 = 𝑄 ∧ 𝑓 = 𝐹) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑄)) |
| 6 | 3, 5 | fveq12d 6833 |
. . . . 5
⊢ ((𝑑 = 𝑄 ∧ 𝑓 = 𝐹) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝐹‘(𝑥 ∘ 𝑄))) |
| 7 | 6 | mpteq2dv 5189 |
. . . 4
⊢ ((𝑑 = 𝑄 ∧ 𝑓 = 𝐹) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄)))) |
| 8 | 7 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ (𝑑 = 𝑄 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄)))) |
| 9 | | mplvrpmfgalem.q |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| 10 | | mplvrpmfgalem.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑀) |
| 11 | | ovex 7386 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 12 | 11 | rabex 5281 |
. . . . 5
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V |
| 13 | 12 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ∈
V) |
| 14 | 13 | mptexd 7164 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄))) ∈ V) |
| 15 | 2, 8, 9, 10, 14 | ovmpod 7505 |
. 2
⊢ (𝜑 → (𝑄𝐴𝐹) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄)))) |
| 16 | | breq1 5098 |
. . . . 5
⊢ (ℎ = (𝑥 ∘ 𝑄) → (ℎ finSupp 0 ↔ (𝑥 ∘ 𝑄) finSupp 0)) |
| 17 | | nn0ex 12409 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
ℕ0 ∈ V) |
| 19 | | mplvrpmga.5 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝐼 ∈ 𝑉) |
| 21 | | eqid 2729 |
. . . . . . . . . 10
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| 22 | 21 | psrbasfsupp 33563 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 23 | 22 | psrbagf 21844 |
. . . . . . . 8
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
𝑥:𝐼⟶ℕ0) |
| 24 | 23 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥:𝐼⟶ℕ0) |
| 25 | | mplvrpmga.1 |
. . . . . . . . . . 11
⊢ 𝑆 = (SymGrp‘𝐼) |
| 26 | | mplvrpmga.2 |
. . . . . . . . . . 11
⊢ 𝑃 = (Base‘𝑆) |
| 27 | 25, 26 | symgbasf1o 19273 |
. . . . . . . . . 10
⊢ (𝑄 ∈ 𝑃 → 𝑄:𝐼–1-1-onto→𝐼) |
| 28 | 9, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:𝐼–1-1-onto→𝐼) |
| 29 | | f1of 6768 |
. . . . . . . . 9
⊢ (𝑄:𝐼–1-1-onto→𝐼 → 𝑄:𝐼⟶𝐼) |
| 30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑄:𝐼⟶𝐼) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑄:𝐼⟶𝐼) |
| 32 | 24, 31 | fcod 6681 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑄):𝐼⟶ℕ0) |
| 33 | 18, 20, 32 | elmapdd 8775 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑄) ∈ (ℕ0
↑m 𝐼)) |
| 34 | 22 | psrbagfsupp 21845 |
. . . . . . 7
⊢ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
𝑥 finSupp
0) |
| 35 | 34 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 finSupp
0) |
| 36 | | f1of1 6767 |
. . . . . . . 8
⊢ (𝑄:𝐼–1-1-onto→𝐼 → 𝑄:𝐼–1-1→𝐼) |
| 37 | 28, 36 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑄:𝐼–1-1→𝐼) |
| 38 | 37 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑄:𝐼–1-1→𝐼) |
| 39 | | 0nn0 12418 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 40 | 39 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
0 ∈ ℕ0) |
| 41 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 42 | 35, 38, 40, 41 | fsuppco 9311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑄) finSupp 0) |
| 43 | 16, 33, 42 | elrabd 3652 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0}) →
(𝑥 ∘ 𝑄) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 44 | | eqidd 2730 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄)) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄))) |
| 45 | | eqidd 2730 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦)) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦))) |
| 46 | | fveq2 6826 |
. . . 4
⊢ (𝑦 = (𝑥 ∘ 𝑄) → (𝐹‘𝑦) = (𝐹‘(𝑥 ∘ 𝑄))) |
| 47 | 43, 44, 45, 46 | fmptco 7067 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦)) ∘ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄)))) |
| 48 | | eqid 2729 |
. . . . . . 7
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 49 | | eqid 2729 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 50 | | mplvrpmga.3 |
. . . . . . 7
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 51 | 48, 49, 50, 22, 10 | mplelf 21924 |
. . . . . 6
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}⟶(Base‘𝑅)) |
| 52 | 51 | feqmptd 6895 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦))) |
| 53 | | mplvrpmfgalem.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 54 | 48, 50, 53, 10 | mplelsfi 21921 |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 55 | 52, 54 | breq1dd 32569 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦)) finSupp 0 ) |
| 56 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ0 ∈
V) |
| 57 | 39 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
| 58 | | breq1 5098 |
. . . . . . 7
⊢ (ℎ = 𝑔 → (ℎ finSupp 0 ↔ 𝑔 finSupp 0)) |
| 59 | 58 | cbvrabv 3407 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{𝑔 ∈
(ℕ0 ↑m 𝐼) ∣ 𝑔 finSupp 0} |
| 60 | 28, 19, 19, 56, 57, 21, 59 | fcobijfs2 32685 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}–1-1-onto→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 61 | | f1of1 6767 |
. . . . 5
⊢ ((𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}–1-1-onto→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
(𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 62 | 60, 61 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}–1-1→{ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
| 63 | 53 | fvexi 6840 |
. . . . 5
⊢ 0 ∈
V |
| 64 | 63 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈ V) |
| 65 | 13 | mptexd 7164 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦)) ∈ V) |
| 66 | 55, 62, 64, 65 | fsuppco 9311 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘𝑦)) ∘ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑥 ∘ 𝑄))) finSupp 0 ) |
| 67 | 47, 66 | breq1dd 32569 |
. 2
⊢ (𝜑 → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝐹‘(𝑥 ∘ 𝑄))) finSupp 0 ) |
| 68 | 15, 67 | eqbrtrd 5117 |
1
⊢ (𝜑 → (𝑄𝐴𝐹) finSupp 0 ) |