Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplvrpmfgalem Structured version   Visualization version   GIF version

Theorem mplvrpmfgalem 33564
Description: Permuting variables in a multivariate polynomial conserves finite support. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
mplvrpmga.1 𝑆 = (SymGrp‘𝐼)
mplvrpmga.2 𝑃 = (Base‘𝑆)
mplvrpmga.3 𝑀 = (Base‘(𝐼 mPoly 𝑅))
mplvrpmga.4 𝐴 = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
mplvrpmga.5 (𝜑𝐼𝑉)
mplvrpmfgalem.z 0 = (0g𝑅)
mplvrpmfgalem.f (𝜑𝐹𝑀)
mplvrpmfgalem.q (𝜑𝑄𝑃)
Assertion
Ref Expression
mplvrpmfgalem (𝜑 → (𝑄𝐴𝐹) finSupp 0 )
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐼,𝑑,𝑓,,𝑥   𝑀,𝑑,𝑓,𝑥   𝑃,𝑑,𝑓,𝑥   𝑥,𝑅   𝜑,𝑑,𝑓,𝑥   𝐹,𝑑,𝑓,𝑥   𝑄,𝑑,𝑓,,𝑥
Allowed substitution hints:   𝜑()   𝐴()   𝑃()   𝑅(𝑓,,𝑑)   𝑆(𝑥,𝑓,,𝑑)   𝐹()   𝑀()   𝑉(𝑥,𝑓,,𝑑)   0 (𝑥,𝑓,,𝑑)

Proof of Theorem mplvrpmfgalem
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplvrpmga.4 . . . 4 𝐴 = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))))
21a1i 11 . . 3 (𝜑𝐴 = (𝑑𝑃, 𝑓𝑀 ↦ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑)))))
3 simpr 484 . . . . . 6 ((𝑑 = 𝑄𝑓 = 𝐹) → 𝑓 = 𝐹)
4 coeq2 5805 . . . . . . 7 (𝑑 = 𝑄 → (𝑥𝑑) = (𝑥𝑄))
54adantr 480 . . . . . 6 ((𝑑 = 𝑄𝑓 = 𝐹) → (𝑥𝑑) = (𝑥𝑄))
63, 5fveq12d 6833 . . . . 5 ((𝑑 = 𝑄𝑓 = 𝐹) → (𝑓‘(𝑥𝑑)) = (𝐹‘(𝑥𝑄)))
76mpteq2dv 5189 . . . 4 ((𝑑 = 𝑄𝑓 = 𝐹) → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))))
87adantl 481 . . 3 ((𝜑 ∧ (𝑑 = 𝑄𝑓 = 𝐹)) → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑓‘(𝑥𝑑))) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))))
9 mplvrpmfgalem.q . . 3 (𝜑𝑄𝑃)
10 mplvrpmfgalem.f . . 3 (𝜑𝐹𝑀)
11 ovex 7386 . . . . . 6 (ℕ0m 𝐼) ∈ V
1211rabex 5281 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ∈ V
1312a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ∈ V)
1413mptexd 7164 . . 3 (𝜑 → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))) ∈ V)
152, 8, 9, 10, 14ovmpod 7505 . 2 (𝜑 → (𝑄𝐴𝐹) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))))
16 breq1 5098 . . . . 5 ( = (𝑥𝑄) → ( finSupp 0 ↔ (𝑥𝑄) finSupp 0))
17 nn0ex 12409 . . . . . . 7 0 ∈ V
1817a1i 11 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → ℕ0 ∈ V)
19 mplvrpmga.5 . . . . . . 7 (𝜑𝐼𝑉)
2019adantr 480 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝐼𝑉)
21 eqid 2729 . . . . . . . . . 10 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
2221psrbasfsupp 33563 . . . . . . . . 9 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2322psrbagf 21844 . . . . . . . 8 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → 𝑥:𝐼⟶ℕ0)
2423adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝑥:𝐼⟶ℕ0)
25 mplvrpmga.1 . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐼)
26 mplvrpmga.2 . . . . . . . . . . 11 𝑃 = (Base‘𝑆)
2725, 26symgbasf1o 19273 . . . . . . . . . 10 (𝑄𝑃𝑄:𝐼1-1-onto𝐼)
289, 27syl 17 . . . . . . . . 9 (𝜑𝑄:𝐼1-1-onto𝐼)
29 f1of 6768 . . . . . . . . 9 (𝑄:𝐼1-1-onto𝐼𝑄:𝐼𝐼)
3028, 29syl 17 . . . . . . . 8 (𝜑𝑄:𝐼𝐼)
3130adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝑄:𝐼𝐼)
3224, 31fcod 6681 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → (𝑥𝑄):𝐼⟶ℕ0)
3318, 20, 32elmapdd 8775 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → (𝑥𝑄) ∈ (ℕ0m 𝐼))
3422psrbagfsupp 21845 . . . . . . 7 (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → 𝑥 finSupp 0)
3534adantl 481 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝑥 finSupp 0)
36 f1of1 6767 . . . . . . . 8 (𝑄:𝐼1-1-onto𝐼𝑄:𝐼1-1𝐼)
3728, 36syl 17 . . . . . . 7 (𝜑𝑄:𝐼1-1𝐼)
3837adantr 480 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝑄:𝐼1-1𝐼)
39 0nn0 12418 . . . . . . 7 0 ∈ ℕ0
4039a1i 11 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 0 ∈ ℕ0)
41 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → 𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
4235, 38, 40, 41fsuppco 9311 . . . . 5 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → (𝑥𝑄) finSupp 0)
4316, 33, 42elrabd 3652 . . . 4 ((𝜑𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0}) → (𝑥𝑄) ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
44 eqidd 2730 . . . 4 (𝜑 → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)))
45 eqidd 2730 . . . 4 (𝜑 → (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)) = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)))
46 fveq2 6826 . . . 4 (𝑦 = (𝑥𝑄) → (𝐹𝑦) = (𝐹‘(𝑥𝑄)))
4743, 44, 45, 46fmptco 7067 . . 3 (𝜑 → ((𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)) ∘ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄))) = (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))))
48 eqid 2729 . . . . . . 7 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
49 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
50 mplvrpmga.3 . . . . . . 7 𝑀 = (Base‘(𝐼 mPoly 𝑅))
5148, 49, 50, 22, 10mplelf 21924 . . . . . 6 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ finSupp 0}⟶(Base‘𝑅))
5251feqmptd 6895 . . . . 5 (𝜑𝐹 = (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)))
53 mplvrpmfgalem.z . . . . . 6 0 = (0g𝑅)
5448, 50, 53, 10mplelsfi 21921 . . . . 5 (𝜑𝐹 finSupp 0 )
5552, 54breq1dd 32569 . . . 4 (𝜑 → (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)) finSupp 0 )
5617a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
5739a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
58 breq1 5098 . . . . . . 7 ( = 𝑔 → ( finSupp 0 ↔ 𝑔 finSupp 0))
5958cbvrabv 3407 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = {𝑔 ∈ (ℕ0m 𝐼) ∣ 𝑔 finSupp 0}
6028, 19, 19, 56, 57, 21, 59fcobijfs2 32685 . . . . 5 (𝜑 → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)):{ ∈ (ℕ0m 𝐼) ∣ finSupp 0}–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ finSupp 0})
61 f1of1 6767 . . . . 5 ((𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)):{ ∈ (ℕ0m 𝐼) ∣ finSupp 0}–1-1-onto→{ ∈ (ℕ0m 𝐼) ∣ finSupp 0} → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)):{ ∈ (ℕ0m 𝐼) ∣ finSupp 0}–1-1→{ ∈ (ℕ0m 𝐼) ∣ finSupp 0})
6260, 61syl 17 . . . 4 (𝜑 → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄)):{ ∈ (ℕ0m 𝐼) ∣ finSupp 0}–1-1→{ ∈ (ℕ0m 𝐼) ∣ finSupp 0})
6353fvexi 6840 . . . . 5 0 ∈ V
6463a1i 11 . . . 4 (𝜑0 ∈ V)
6513mptexd 7164 . . . 4 (𝜑 → (𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)) ∈ V)
6655, 62, 64, 65fsuppco 9311 . . 3 (𝜑 → ((𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹𝑦)) ∘ (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝑥𝑄))) finSupp 0 )
6747, 66breq1dd 32569 . 2 (𝜑 → (𝑥 ∈ { ∈ (ℕ0m 𝐼) ∣ finSupp 0} ↦ (𝐹‘(𝑥𝑄))) finSupp 0 )
6815, 67eqbrtrd 5117 1 (𝜑 → (𝑄𝐴𝐹) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438   class class class wbr 5095  cmpt 5176  ccom 5627  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760   finSupp cfsupp 9270  0cc0 11028  0cn0 12403  Basecbs 17139  0gc0g 17362  SymGrpcsymg 19267   mPoly cmpl 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-tset 17199  df-efmnd 18762  df-symg 19268  df-psr 21835  df-mpl 21837
This theorem is referenced by:  mplvrpmga  33565
  Copyright terms: Public domain W3C validator