Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinvbr Structured version   Visualization version   GIF version

Theorem fcoinvbr 30848
Description: Binary relation for the equivalence relation from fcoinver 30847. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Hypothesis
Ref Expression
fcoinvbr.e = (𝐹𝐹)
Assertion
Ref Expression
fcoinvbr ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))

Proof of Theorem fcoinvbr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fcoinvbr.e . . . . 5 = (𝐹𝐹)
21breqi 5076 . . . 4 (𝑋 𝑌𝑋(𝐹𝐹)𝑌)
3 brcog 5764 . . . 4 ((𝑋𝐴𝑌𝐴) → (𝑋(𝐹𝐹)𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
42, 3syl5bb 282 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
543adant1 1128 . 2 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
6 fvex 6769 . . . . 5 (𝐹𝑋) ∈ V
76eqvinc 3571 . . . 4 ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧(𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)))
8 eqcom 2745 . . . . . 6 (𝑧 = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑧)
9 eqcom 2745 . . . . . 6 (𝑧 = (𝐹𝑌) ↔ (𝐹𝑌) = 𝑧)
108, 9anbi12i 626 . . . . 5 ((𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)) ↔ ((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
1110exbii 1851 . . . 4 (∃𝑧(𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)) ↔ ∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
127, 11bitri 274 . . 3 ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
13 fnbrfvb 6804 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = 𝑧𝑋𝐹𝑧))
14133adant3 1130 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑋) = 𝑧𝑋𝐹𝑧))
15 fnbrfvb 6804 . . . . . . 7 ((𝐹 Fn 𝐴𝑌𝐴) → ((𝐹𝑌) = 𝑧𝑌𝐹𝑧))
16153adant2 1129 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑌) = 𝑧𝑌𝐹𝑧))
1714, 16anbi12d 630 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ (𝑋𝐹𝑧𝑌𝐹𝑧)))
18 vex 3426 . . . . . . . 8 𝑧 ∈ V
19 brcnvg 5777 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑌𝐴) → (𝑧𝐹𝑌𝑌𝐹𝑧))
2018, 19mpan 686 . . . . . . 7 (𝑌𝐴 → (𝑧𝐹𝑌𝑌𝐹𝑧))
21203ad2ant3 1133 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑧𝐹𝑌𝑌𝐹𝑧))
2221anbi2d 628 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝑋𝐹𝑧𝑧𝐹𝑌) ↔ (𝑋𝐹𝑧𝑌𝐹𝑧)))
2317, 22bitr4d 281 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ (𝑋𝐹𝑧𝑧𝐹𝑌)))
2423exbidv 1925 . . 3 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
2512, 24syl5bb 282 . 2 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
265, 25bitr4d 281 1 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422   class class class wbr 5070  ccnv 5579  ccom 5584   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  qtophaus  31688
  Copyright terms: Public domain W3C validator