Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoinvbr Structured version   Visualization version   GIF version

Theorem fcoinvbr 32541
Description: Binary relation for the equivalence relation from fcoinver 32540. (Contributed by Thierry Arnoux, 3-Jan-2020.)
Hypothesis
Ref Expression
fcoinvbr.e = (𝐹𝐹)
Assertion
Ref Expression
fcoinvbr ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))

Proof of Theorem fcoinvbr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fcoinvbr.e . . . . 5 = (𝐹𝐹)
21breqi 5116 . . . 4 (𝑋 𝑌𝑋(𝐹𝐹)𝑌)
3 brcog 5833 . . . 4 ((𝑋𝐴𝑌𝐴) → (𝑋(𝐹𝐹)𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
42, 3bitrid 283 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
543adant1 1130 . 2 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
6 fvex 6874 . . . . 5 (𝐹𝑋) ∈ V
76eqvinc 3618 . . . 4 ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧(𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)))
8 eqcom 2737 . . . . . 6 (𝑧 = (𝐹𝑋) ↔ (𝐹𝑋) = 𝑧)
9 eqcom 2737 . . . . . 6 (𝑧 = (𝐹𝑌) ↔ (𝐹𝑌) = 𝑧)
108, 9anbi12i 628 . . . . 5 ((𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)) ↔ ((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
1110exbii 1848 . . . 4 (∃𝑧(𝑧 = (𝐹𝑋) ∧ 𝑧 = (𝐹𝑌)) ↔ ∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
127, 11bitri 275 . . 3 ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧))
13 fnbrfvb 6914 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹𝑋) = 𝑧𝑋𝐹𝑧))
14133adant3 1132 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑋) = 𝑧𝑋𝐹𝑧))
15 fnbrfvb 6914 . . . . . . 7 ((𝐹 Fn 𝐴𝑌𝐴) → ((𝐹𝑌) = 𝑧𝑌𝐹𝑧))
16153adant2 1131 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑌) = 𝑧𝑌𝐹𝑧))
1714, 16anbi12d 632 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ (𝑋𝐹𝑧𝑌𝐹𝑧)))
18 vex 3454 . . . . . . . 8 𝑧 ∈ V
19 brcnvg 5846 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑌𝐴) → (𝑧𝐹𝑌𝑌𝐹𝑧))
2018, 19mpan 690 . . . . . . 7 (𝑌𝐴 → (𝑧𝐹𝑌𝑌𝐹𝑧))
21203ad2ant3 1135 . . . . . 6 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑧𝐹𝑌𝑌𝐹𝑧))
2221anbi2d 630 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝑋𝐹𝑧𝑧𝐹𝑌) ↔ (𝑋𝐹𝑧𝑌𝐹𝑧)))
2317, 22bitr4d 282 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ (𝑋𝐹𝑧𝑧𝐹𝑌)))
2423exbidv 1921 . . 3 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (∃𝑧((𝐹𝑋) = 𝑧 ∧ (𝐹𝑌) = 𝑧) ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
2512, 24bitrid 283 . 2 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → ((𝐹𝑋) = (𝐹𝑌) ↔ ∃𝑧(𝑋𝐹𝑧𝑧𝐹𝑌)))
265, 25bitr4d 282 1 ((𝐹 Fn 𝐴𝑋𝐴𝑌𝐴) → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110  ccnv 5640  ccom 5645   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  qtophaus  33833
  Copyright terms: Public domain W3C validator