MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifval Structured version   Visualization version   GIF version

Theorem ifval 4501
Description: Another expression of the value of the if predicate, analogous to eqif 4500. See also the more specialized iftrue 4465 and iffalse 4468. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
ifval (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem ifval
StepHypRef Expression
1 eqif 4500 . 2 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
2 cases2 1045 . 2 (((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))
31, 2bitri 274 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460
This theorem is referenced by:  dfiota4  6425  bj-projval  35186  dfaiota3  44584
  Copyright terms: Public domain W3C validator