MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifval Structured version   Visualization version   GIF version

Theorem ifval 4518
Description: Another expression of the value of the if predicate, analogous to eqif 4517. See also the more specialized iftrue 4481 and iffalse 4484. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
ifval (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem ifval
StepHypRef Expression
1 eqif 4517 . 2 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
2 cases2 1047 . 2 (((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))
31, 2bitri 275 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∧ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  ifcif 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4476
This theorem is referenced by:  dfiota4  6473  bj-projval  37036  dfaiota3  47129
  Copyright terms: Public domain W3C validator