MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveu Structured version   Visualization version   GIF version

Theorem cbveu 2607
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbveuw 2605, cbveuvw 2604 when possible. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbveu.1 𝑦𝜑
cbveu.2 𝑥𝜓
cbveu.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveu (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3 𝑦𝜑
21sb8eu 2598 . 2 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
3 cbveu.2 . . . 4 𝑥𝜓
4 cbveu.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 2504 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
65eubii 2583 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓)
72, 6bitri 274 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1784  [wsb 2066  ∃!weu 2566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567
This theorem is referenced by:  cbvreu  3395  cbvreucsf  3890
  Copyright terms: Public domain W3C validator