MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbveuw Structured version   Visualization version   GIF version

Theorem cbveuw 2609
Description: Version of cbveu 2610 with a disjoint variable condition, which does not require ax-10 2141, ax-13 2380. (Contributed by NM, 25-Nov-1994.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbveuw.1 𝑦𝜑
cbveuw.2 𝑥𝜓
cbveuw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveuw (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbveuw
StepHypRef Expression
1 cbveuw.1 . . . 4 𝑦𝜑
2 cbveuw.2 . . . 4 𝑥𝜓
3 cbveuw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvexv1 2348 . . 3 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
51, 2, 3cbvmow 2606 . . 3 (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
64, 5anbi12i 627 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
7 df-eu 2572 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
8 df-eu 2572 . 2 (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓))
96, 7, 83bitr4i 303 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wnf 1781  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by:  cbvreuwOLD  3423  tz6.12f  6946  f1ompt  7145  climeu  15601  initoeu2  18083
  Copyright terms: Public domain W3C validator