| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbveuw | Structured version Visualization version GIF version | ||
| Description: Version of cbveu 2607 with a disjoint variable condition, which does not require ax-10 2141, ax-13 2377. (Contributed by NM, 25-Nov-1994.) (Revised by GG, 23-May-2024.) |
| Ref | Expression |
|---|---|
| cbveuw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbveuw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbveuw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbveuw | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveuw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbveuw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbveuw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvexv1 2344 | . . 3 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| 5 | 1, 2, 3 | cbvmow 2603 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| 6 | 4, 5 | anbi12i 628 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) |
| 7 | df-eu 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 8 | df-eu 2569 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: cbvreuwOLD 3415 tz6.12f 6932 f1ompt 7131 climeu 15591 initoeu2 18061 |
| Copyright terms: Public domain | W3C validator |