Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnud Structured version   Visualization version   GIF version

Theorem grumnud 41904
Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
grumnud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnud.2 (𝜑𝐺 ∈ Univ)
Assertion
Ref Expression
grumnud (𝜑𝐺𝑀)
Distinct variable groups:   𝑘,𝑚,𝑛,𝐺,𝑞,𝑝,𝑙   𝑘,𝑟,𝑚,𝑛,𝐺,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem grumnud
Dummy variables 𝑧 𝑓 𝑖 𝑗 𝑢 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnud.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 grumnud.2 . 2 (𝜑𝐺 ∈ Univ)
3 eqid 2738 . 2 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
4 brxp 5636 . . . 4 (𝑖(𝐺 × 𝐺) ↔ (𝑖𝐺𝐺))
5 brin 5126 . . . . 5 (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}𝑖(𝐺 × 𝐺)))
65rbaib 539 . . . 4 (𝑖(𝐺 × 𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
74, 6sylbir 234 . . 3 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
8 vex 3436 . . . 4 𝑖 ∈ V
9 vex 3436 . . . 4 ∈ V
10 simpr 485 . . . . . . . 8 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
1110unieqd 4853 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
12 simplr 766 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑐 = )
1311, 12eqeq12d 2754 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → ( 𝑑 = 𝑐 𝑗 = ))
14 elequ1 2113 . . . . . . 7 (𝑑 = 𝑗 → (𝑑𝑓𝑗𝑓))
1514adantl 482 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑑𝑓𝑗𝑓))
16 eleq12 2828 . . . . . . 7 ((𝑏 = 𝑖𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1716adantlr 712 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1813, 15, 173anbi123d 1435 . . . . 5 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ( 𝑗 = 𝑗𝑓𝑖𝑗)))
1918cbvexdvaw 2042 . . . 4 ((𝑏 = 𝑖𝑐 = ) → (∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
20 eqid 2738 . . . 4 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}
218, 9, 19, 20braba 5450 . . 3 (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
227, 21bitrdi 287 . 2 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
23 simplr3 1216 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑗)
24 simpr 485 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
2523, 24eleqtrrd 2842 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑢)
2624unieqd 4853 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
27 simplr1 1214 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑗 = )
2826, 27eqtrd 2778 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = )
29 simpll 764 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3028, 29eqeltrd 2839 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3125, 30jca 512 . . 3 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
32 simpr2 1194 . . 3 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → 𝑗𝑓)
3331, 32rspcime 3564 . 2 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
341, 2, 3, 22, 33grumnudlem 41903 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  {copab 5136   × cxp 5587  Univcgru 10546   Coll ccoll 41868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-tc 9495  df-r1 9522  df-rank 9523  df-card 9697  df-cf 9699  df-acn 9700  df-ac 9872  df-wina 10440  df-ina 10441  df-gru 10547  df-scott 41854  df-coll 41869
This theorem is referenced by:  grumnueq  41905
  Copyright terms: Public domain W3C validator