Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnud Structured version   Visualization version   GIF version

Theorem grumnud 40671
Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
grumnud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnud.2 (𝜑𝐺 ∈ Univ)
Assertion
Ref Expression
grumnud (𝜑𝐺𝑀)
Distinct variable groups:   𝑘,𝑚,𝑛,𝐺,𝑞,𝑝,𝑙   𝑘,𝑟,𝑚,𝑛,𝐺,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem grumnud
Dummy variables 𝑧 𝑓 𝑖 𝑗 𝑢 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnud.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 grumnud.2 . 2 (𝜑𝐺 ∈ Univ)
3 eqid 2821 . 2 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
4 brxp 5601 . . . 4 (𝑖(𝐺 × 𝐺) ↔ (𝑖𝐺𝐺))
5 brin 5118 . . . . 5 (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}𝑖(𝐺 × 𝐺)))
65rbaib 541 . . . 4 (𝑖(𝐺 × 𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
74, 6sylbir 237 . . 3 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
8 vex 3497 . . . 4 𝑖 ∈ V
9 vex 3497 . . . 4 ∈ V
10 simpr 487 . . . . . . . 8 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
1110unieqd 4852 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
12 simplr 767 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑐 = )
1311, 12eqeq12d 2837 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → ( 𝑑 = 𝑐 𝑗 = ))
14 elequ1 2121 . . . . . . 7 (𝑑 = 𝑗 → (𝑑𝑓𝑗𝑓))
1514adantl 484 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑑𝑓𝑗𝑓))
16 eleq12 2902 . . . . . . 7 ((𝑏 = 𝑖𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1716adantlr 713 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1813, 15, 173anbi123d 1432 . . . . 5 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ( 𝑗 = 𝑗𝑓𝑖𝑗)))
1918cbvexdvaw 2046 . . . 4 ((𝑏 = 𝑖𝑐 = ) → (∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
20 eqid 2821 . . . 4 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}
218, 9, 19, 20braba 5424 . . 3 (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
227, 21syl6bb 289 . 2 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
23 simplr3 1213 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑗)
24 simpr 487 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
2523, 24eleqtrrd 2916 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑢)
2624unieqd 4852 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
27 simplr1 1211 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑗 = )
2826, 27eqtrd 2856 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = )
29 simpll 765 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3028, 29eqeltrd 2913 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3125, 30jca 514 . . 3 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
32 simpr2 1191 . . 3 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → 𝑗𝑓)
3331, 32rspcime 3627 . 2 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
341, 2, 3, 22, 33grumnudlem 40670 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4838   class class class wbr 5066  {copab 5128   × cxp 5553  Univcgru 10212   Coll ccoll 40635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-tc 9179  df-r1 9193  df-rank 9194  df-card 9368  df-cf 9370  df-acn 9371  df-ac 9542  df-wina 10106  df-ina 10107  df-gru 10213  df-scott 40621  df-coll 40636
This theorem is referenced by:  grumnueq  40672
  Copyright terms: Public domain W3C validator