Step | Hyp | Ref
| Expression |
1 | | grumnud.1 |
. 2
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
2 | | grumnud.2 |
. 2
⊢ (𝜑 → 𝐺 ∈ Univ) |
3 | | eqid 2738 |
. 2
⊢
({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) |
4 | | brxp 5636 |
. . . 4
⊢ (𝑖(𝐺 × 𝐺)ℎ ↔ (𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺)) |
5 | | brin 5126 |
. . . . 5
⊢ (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ (𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ ∧ 𝑖(𝐺 × 𝐺)ℎ)) |
6 | 5 | rbaib 539 |
. . . 4
⊢ (𝑖(𝐺 × 𝐺)ℎ → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ 𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ)) |
7 | 4, 6 | sylbir 234 |
. . 3
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ 𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ)) |
8 | | vex 3436 |
. . . 4
⊢ 𝑖 ∈ V |
9 | | vex 3436 |
. . . 4
⊢ ℎ ∈ V |
10 | | simpr 485 |
. . . . . . . 8
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗) |
11 | 10 | unieqd 4853 |
. . . . . . 7
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → ∪ 𝑑 = ∪
𝑗) |
12 | | simplr 766 |
. . . . . . 7
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → 𝑐 = ℎ) |
13 | 11, 12 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (∪ 𝑑 = 𝑐 ↔ ∪ 𝑗 = ℎ)) |
14 | | elequ1 2113 |
. . . . . . 7
⊢ (𝑑 = 𝑗 → (𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓)) |
15 | 14 | adantl 482 |
. . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓)) |
16 | | eleq12 2828 |
. . . . . . 7
⊢ ((𝑏 = 𝑖 ∧ 𝑑 = 𝑗) → (𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗)) |
17 | 16 | adantlr 712 |
. . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗)) |
18 | 13, 15, 17 | 3anbi123d 1435 |
. . . . 5
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → ((∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑) ↔ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
19 | 18 | cbvexdvaw 2042 |
. . . 4
⊢ ((𝑏 = 𝑖 ∧ 𝑐 = ℎ) → (∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑) ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
20 | | eqid 2738 |
. . . 4
⊢
{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} |
21 | 8, 9, 19, 20 | braba 5450 |
. . 3
⊢ (𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) |
22 | 7, 21 | bitrdi 287 |
. 2
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) |
23 | | simplr3 1216 |
. . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑖 ∈ 𝑗) |
24 | | simpr 485 |
. . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗) |
25 | 23, 24 | eleqtrrd 2842 |
. . . 4
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑖 ∈ 𝑢) |
26 | 24 | unieqd 4853 |
. . . . . 6
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 = ∪
𝑗) |
27 | | simplr1 1214 |
. . . . . 6
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑗 = ℎ) |
28 | 26, 27 | eqtrd 2778 |
. . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 = ℎ) |
29 | | simpll 764 |
. . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)) |
30 | 28, 29 | eqeltrd 2839 |
. . . 4
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)) |
31 | 25, 30 | jca 512 |
. . 3
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))) |
32 | | simpr2 1194 |
. . 3
⊢ ((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → 𝑗 ∈ 𝑓) |
33 | 31, 32 | rspcime 3564 |
. 2
⊢ ((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))) |
34 | 1, 2, 3, 22, 33 | grumnudlem 41903 |
1
⊢ (𝜑 → 𝐺 ∈ 𝑀) |