Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnud Structured version   Visualization version   GIF version

Theorem grumnud 43035
Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
grumnud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnud.2 (𝜑𝐺 ∈ Univ)
Assertion
Ref Expression
grumnud (𝜑𝐺𝑀)
Distinct variable groups:   𝑘,𝑚,𝑛,𝐺,𝑞,𝑝,𝑙   𝑘,𝑟,𝑚,𝑛,𝐺,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem grumnud
Dummy variables 𝑧 𝑓 𝑖 𝑗 𝑢 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnud.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 grumnud.2 . 2 (𝜑𝐺 ∈ Univ)
3 eqid 2732 . 2 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
4 brxp 5725 . . . 4 (𝑖(𝐺 × 𝐺) ↔ (𝑖𝐺𝐺))
5 brin 5200 . . . . 5 (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}𝑖(𝐺 × 𝐺)))
65rbaib 539 . . . 4 (𝑖(𝐺 × 𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
74, 6sylbir 234 . . 3 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
8 vex 3478 . . . 4 𝑖 ∈ V
9 vex 3478 . . . 4 ∈ V
10 simpr 485 . . . . . . . 8 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
1110unieqd 4922 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
12 simplr 767 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑐 = )
1311, 12eqeq12d 2748 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → ( 𝑑 = 𝑐 𝑗 = ))
14 elequ1 2113 . . . . . . 7 (𝑑 = 𝑗 → (𝑑𝑓𝑗𝑓))
1514adantl 482 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑑𝑓𝑗𝑓))
16 eleq12 2823 . . . . . . 7 ((𝑏 = 𝑖𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1716adantlr 713 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1813, 15, 173anbi123d 1436 . . . . 5 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ( 𝑗 = 𝑗𝑓𝑖𝑗)))
1918cbvexdvaw 2042 . . . 4 ((𝑏 = 𝑖𝑐 = ) → (∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
20 eqid 2732 . . . 4 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}
218, 9, 19, 20braba 5537 . . 3 (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
227, 21bitrdi 286 . 2 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
23 simplr3 1217 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑗)
24 simpr 485 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
2523, 24eleqtrrd 2836 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑢)
2624unieqd 4922 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
27 simplr1 1215 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑗 = )
2826, 27eqtrd 2772 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = )
29 simpll 765 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3028, 29eqeltrd 2833 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3125, 30jca 512 . . 3 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
32 simpr2 1195 . . 3 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → 𝑗𝑓)
3331, 32rspcime 3616 . 2 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
341, 2, 3, 22, 33grumnudlem 43034 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  wrex 3070  cin 3947  wss 3948  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  {copab 5210   × cxp 5674  Univcgru 10784   Coll ccoll 42999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635  ax-ac2 10457
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-tc 9731  df-r1 9758  df-rank 9759  df-card 9933  df-cf 9935  df-acn 9936  df-ac 10110  df-wina 10678  df-ina 10679  df-gru 10785  df-scott 42985  df-coll 43000
This theorem is referenced by:  grumnueq  43036
  Copyright terms: Public domain W3C validator