| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | grumnud.1 | . 2
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| 2 |  | grumnud.2 | . 2
⊢ (𝜑 → 𝐺 ∈ Univ) | 
| 3 |  | eqid 2737 | . 2
⊢
({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) | 
| 4 |  | brxp 5734 | . . . 4
⊢ (𝑖(𝐺 × 𝐺)ℎ ↔ (𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺)) | 
| 5 |  | brin 5195 | . . . . 5
⊢ (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ (𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ ∧ 𝑖(𝐺 × 𝐺)ℎ)) | 
| 6 | 5 | rbaib 538 | . . . 4
⊢ (𝑖(𝐺 × 𝐺)ℎ → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ 𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ)) | 
| 7 | 4, 6 | sylbir 235 | . . 3
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ 𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ)) | 
| 8 |  | vex 3484 | . . . 4
⊢ 𝑖 ∈ V | 
| 9 |  | vex 3484 | . . . 4
⊢ ℎ ∈ V | 
| 10 |  | simpr 484 | . . . . . . . 8
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗) | 
| 11 | 10 | unieqd 4920 | . . . . . . 7
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → ∪ 𝑑 = ∪
𝑗) | 
| 12 |  | simplr 769 | . . . . . . 7
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → 𝑐 = ℎ) | 
| 13 | 11, 12 | eqeq12d 2753 | . . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (∪ 𝑑 = 𝑐 ↔ ∪ 𝑗 = ℎ)) | 
| 14 |  | elequ1 2115 | . . . . . . 7
⊢ (𝑑 = 𝑗 → (𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓)) | 
| 15 | 14 | adantl 481 | . . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (𝑑 ∈ 𝑓 ↔ 𝑗 ∈ 𝑓)) | 
| 16 |  | eleq12 2831 | . . . . . . 7
⊢ ((𝑏 = 𝑖 ∧ 𝑑 = 𝑗) → (𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗)) | 
| 17 | 16 | adantlr 715 | . . . . . 6
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → (𝑏 ∈ 𝑑 ↔ 𝑖 ∈ 𝑗)) | 
| 18 | 13, 15, 17 | 3anbi123d 1438 | . . . . 5
⊢ (((𝑏 = 𝑖 ∧ 𝑐 = ℎ) ∧ 𝑑 = 𝑗) → ((∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑) ↔ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 19 | 18 | cbvexdvaw 2038 | . . . 4
⊢ ((𝑏 = 𝑖 ∧ 𝑐 = ℎ) → (∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑) ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 20 |  | eqid 2737 | . . . 4
⊢
{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪
𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} = {〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} | 
| 21 | 8, 9, 19, 20 | braba 5542 | . . 3
⊢ (𝑖{〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)}ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) | 
| 22 | 7, 21 | bitrdi 287 | . 2
⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺))ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) | 
| 23 |  | simplr3 1218 | . . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑖 ∈ 𝑗) | 
| 24 |  | simpr 484 | . . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗) | 
| 25 | 23, 24 | eleqtrrd 2844 | . . . 4
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → 𝑖 ∈ 𝑢) | 
| 26 | 24 | unieqd 4920 | . . . . . 6
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 = ∪
𝑗) | 
| 27 |  | simplr1 1216 | . . . . . 6
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑗 = ℎ) | 
| 28 | 26, 27 | eqtrd 2777 | . . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 = ℎ) | 
| 29 |  | simpll 767 | . . . . 5
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)) | 
| 30 | 28, 29 | eqeltrd 2841 | . . . 4
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)) | 
| 31 | 25, 30 | jca 511 | . . 3
⊢ (((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) ∧ 𝑢 = 𝑗) → (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))) | 
| 32 |  | simpr2 1196 | . . 3
⊢ ((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → 𝑗 ∈ 𝑓) | 
| 33 | 31, 32 | rspcime 3627 | . 2
⊢ ((ℎ ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))) | 
| 34 | 1, 2, 3, 22, 33 | grumnudlem 44304 | 1
⊢ (𝜑 → 𝐺 ∈ 𝑀) |