Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grumnud Structured version   Visualization version   GIF version

Theorem grumnud 42275
Description: Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.)
Hypotheses
Ref Expression
grumnud.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
grumnud.2 (𝜑𝐺 ∈ Univ)
Assertion
Ref Expression
grumnud (𝜑𝐺𝑀)
Distinct variable groups:   𝑘,𝑚,𝑛,𝐺,𝑞,𝑝,𝑙   𝑘,𝑟,𝑚,𝑛,𝐺,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem grumnud
Dummy variables 𝑧 𝑓 𝑖 𝑗 𝑢 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grumnud.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 grumnud.2 . 2 (𝜑𝐺 ∈ Univ)
3 eqid 2737 . 2 ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) = ({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))
4 brxp 5672 . . . 4 (𝑖(𝐺 × 𝐺) ↔ (𝑖𝐺𝐺))
5 brin 5149 . . . . 5 (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}𝑖(𝐺 × 𝐺)))
65rbaib 540 . . . 4 (𝑖(𝐺 × 𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
74, 6sylbir 234 . . 3 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺))𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}))
8 vex 3446 . . . 4 𝑖 ∈ V
9 vex 3446 . . . 4 ∈ V
10 simpr 486 . . . . . . . 8 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
1110unieqd 4871 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑑 = 𝑗)
12 simplr 767 . . . . . . 7 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → 𝑐 = )
1311, 12eqeq12d 2753 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → ( 𝑑 = 𝑐 𝑗 = ))
14 elequ1 2113 . . . . . . 7 (𝑑 = 𝑗 → (𝑑𝑓𝑗𝑓))
1514adantl 483 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑑𝑓𝑗𝑓))
16 eleq12 2827 . . . . . . 7 ((𝑏 = 𝑖𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1716adantlr 713 . . . . . 6 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (𝑏𝑑𝑖𝑗))
1813, 15, 173anbi123d 1436 . . . . 5 (((𝑏 = 𝑖𝑐 = ) ∧ 𝑑 = 𝑗) → (( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ( 𝑗 = 𝑗𝑓𝑖𝑗)))
1918cbvexdvaw 2042 . . . 4 ((𝑏 = 𝑖𝑐 = ) → (∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
20 eqid 2737 . . . 4 {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} = {⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)}
218, 9, 19, 20braba 5486 . . 3 (𝑖{⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗))
227, 21bitrdi 287 . 2 ((𝑖𝐺𝐺) → (𝑖({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) ↔ ∃𝑗( 𝑗 = 𝑗𝑓𝑖𝑗)))
23 simplr3 1217 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑗)
24 simpr 486 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
2523, 24eleqtrrd 2841 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑖𝑢)
2624unieqd 4871 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = 𝑗)
27 simplr1 1215 . . . . . 6 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑗 = )
2826, 27eqtrd 2777 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 = )
29 simpll 765 . . . . 5 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3028, 29eqeltrd 2838 . . . 4 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧))
3125, 30jca 513 . . 3 ((( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) ∧ 𝑢 = 𝑗) → (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
32 simpr2 1195 . . 3 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → 𝑗𝑓)
3331, 32rspcime 3577 . 2 (( ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧) ∧ ( 𝑗 = 𝑗𝑓𝑖𝑗)) → ∃𝑢𝑓 (𝑖𝑢 𝑢 ∈ (({⟨𝑏, 𝑐⟩ ∣ ∃𝑑( 𝑑 = 𝑐𝑑𝑓𝑏𝑑)} ∩ (𝐺 × 𝐺)) Coll 𝑧)))
341, 2, 3, 22, 33grumnudlem 42274 1 (𝜑𝐺𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2714  wral 3062  wrex 3071  cin 3901  wss 3902  𝒫 cpw 4552   cuni 4857   class class class wbr 5097  {copab 5159   × cxp 5623  Univcgru 10652   Coll ccoll 42239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-reg 9454  ax-inf2 9503  ax-ac2 10325
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-tc 9599  df-r1 9626  df-rank 9627  df-card 9801  df-cf 9803  df-acn 9804  df-ac 9978  df-wina 10546  df-ina 10547  df-gru 10653  df-scott 42225  df-coll 42240
This theorem is referenced by:  grumnueq  42276
  Copyright terms: Public domain W3C validator