MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinf Structured version   Visualization version   GIF version

Theorem isinf 9211
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5325. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
isinf 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf
Dummy variables 𝑚 𝑦 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . . 6 (𝑛 = ∅ → (𝑥𝑛𝑥 ≈ ∅))
21anbi2d 629 . . . . 5 (𝑛 = ∅ → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥 ≈ ∅)))
32exbidv 1924 . . . 4 (𝑛 = ∅ → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ ∅)))
4 breq2 5114 . . . . . 6 (𝑛 = 𝑚 → (𝑥𝑛𝑥𝑚))
54anbi2d 629 . . . . 5 (𝑛 = 𝑚 → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥𝑚)))
65exbidv 1924 . . . 4 (𝑛 = 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥𝑚)))
7 sseq1 3972 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
87adantl 482 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
9 breq1 5113 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑛𝑦𝑛))
10 breq2 5114 . . . . . . 7 (𝑛 = suc 𝑚 → (𝑦𝑛𝑦 ≈ suc 𝑚))
119, 10sylan9bbr 511 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝑛𝑦 ≈ suc 𝑚))
128, 11anbi12d 631 . . . . 5 ((𝑛 = suc 𝑚𝑥 = 𝑦) → ((𝑥𝐴𝑥𝑛) ↔ (𝑦𝐴𝑦 ≈ suc 𝑚)))
1312cbvexdvaw 2042 . . . 4 (𝑛 = suc 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
14 0ss 4361 . . . . . 6 ∅ ⊆ 𝐴
15 peano1 7830 . . . . . . 7 ∅ ∈ ω
16 enrefnn 8998 . . . . . . 7 (∅ ∈ ω → ∅ ≈ ∅)
1715, 16ax-mp 5 . . . . . 6 ∅ ≈ ∅
18 0ex 5269 . . . . . . 7 ∅ ∈ V
19 sseq1 3972 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
20 breq1 5113 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
2119, 20anbi12d 631 . . . . . . 7 (𝑥 = ∅ → ((𝑥𝐴𝑥 ≈ ∅) ↔ (∅ ⊆ 𝐴 ∧ ∅ ≈ ∅)))
2218, 21spcev 3566 . . . . . 6 ((∅ ⊆ 𝐴 ∧ ∅ ≈ ∅) → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
2314, 17, 22mp2an 690 . . . . 5 𝑥(𝑥𝐴𝑥 ≈ ∅)
2423a1i 11 . . . 4 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
25 ssdif0 4328 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
26 eqss 3962 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
27 breq1 5113 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐴 → (𝑥𝑚𝐴𝑚))
2827biimpa 477 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐴𝑥𝑚) → 𝐴𝑚)
29 rspe 3230 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝐴𝑚) → ∃𝑚 ∈ ω 𝐴𝑚)
3028, 29sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → ∃𝑚 ∈ ω 𝐴𝑚)
31 isfi 8923 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
3230, 31sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → 𝐴 ∈ Fin)
3332expcom 414 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3426, 33sylanbr 582 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐴𝑥) ∧ 𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3534ex 413 . . . . . . . . . . . . 13 ((𝑥𝐴𝐴𝑥) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3625, 35sylan2br 595 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝐴𝑥) = ∅) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3736expcom 414 . . . . . . . . . . 11 ((𝐴𝑥) = ∅ → (𝑥𝐴 → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin))))
38373impd 1348 . . . . . . . . . 10 ((𝐴𝑥) = ∅ → ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → 𝐴 ∈ Fin))
3938com12 32 . . . . . . . . 9 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → ((𝐴𝑥) = ∅ → 𝐴 ∈ Fin))
4039con3d 152 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝑥) = ∅))
41 bren 8900 . . . . . . . . . 10 (𝑥𝑚 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑚)
42 neq0 4310 . . . . . . . . . . . . . 14 (¬ (𝐴𝑥) = ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴𝑥))
43 eldifi 4091 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴𝑥) → 𝑧𝐴)
4443snssd 4774 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝐴𝑥) → {𝑧} ⊆ 𝐴)
45 unss 4149 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4645biimpi 215 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4744, 46sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴𝑧 ∈ (𝐴𝑥)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4847ad2ant2r 745 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
49 vex 3450 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
50 vex 3450 . . . . . . . . . . . . . . . . . . . . . . 23 𝑚 ∈ V
5149, 50f1osn 6829 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}
5251jctr 525 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑥1-1-onto𝑚 → (𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}))
53 eldifn 4092 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐴𝑥) → ¬ 𝑧𝑥)
54 disjsn 4677 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑥)
5553, 54sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐴𝑥) → (𝑥 ∩ {𝑧}) = ∅)
56 nnord 7815 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ω → Ord 𝑚)
57 orddisj 6360 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑚 → (𝑚 ∩ {𝑚}) = ∅)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
5955, 58anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅))
60 f1oun 6808 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}) ∧ ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
6152, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
62 df-suc 6328 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑚 = (𝑚 ∪ {𝑚})
63 f1oeq3 6779 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑚 = (𝑚 ∪ {𝑚}) → ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚})))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
65 vex 3450 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
66 snex 5393 . . . . . . . . . . . . . . . . . . . . . . . 24 {⟨𝑧, 𝑚⟩} ∈ V
6765, 66unex 7685 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∪ {⟨𝑧, 𝑚⟩}) ∈ V
68 f1oeq1 6777 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑚⟩}) → (𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚))
6967, 68spcev 3566 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
70 bren 8900 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∪ {𝑧}) ≈ suc 𝑚 ↔ ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
7169, 70sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7264, 71sylbir 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7361, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7473adantll 712 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
75 vex 3450 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
76 snex 5393 . . . . . . . . . . . . . . . . . . . 20 {𝑧} ∈ V
7775, 76unex 7685 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∪ {𝑧}) ∈ V
78 sseq1 3972 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐴 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴))
79 breq1 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ≈ suc 𝑚 ↔ (𝑥 ∪ {𝑧}) ≈ suc 𝑚))
8078, 79anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑦𝐴𝑦 ≈ suc 𝑚) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚)))
8177, 80spcev 3566 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8248, 74, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8382expcom 414 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
8483ex 413 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8584exlimiv 1933 . . . . . . . . . . . . . 14 (∃𝑧 𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8642, 85sylbi 216 . . . . . . . . . . . . 13 (¬ (𝐴𝑥) = ∅ → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8786com13 88 . . . . . . . . . . . 12 ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8887expcom 414 . . . . . . . . . . 11 (𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8988exlimiv 1933 . . . . . . . . . 10 (∃𝑓 𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
9041, 89sylbi 216 . . . . . . . . 9 (𝑥𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
91903imp21 1114 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
9240, 91syld 47 . . . . . . 7 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
93923expia 1121 . . . . . 6 ((𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9493exlimiv 1933 . . . . 5 (∃𝑥(𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9594com3l 89 . . . 4 (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → (∃𝑥(𝑥𝐴𝑥𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
963, 6, 13, 24, 95finds2 7842 . . 3 (𝑛 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥𝑛)))
9796com12 32 . 2 𝐴 ∈ Fin → (𝑛 ∈ ω → ∃𝑥(𝑥𝐴𝑥𝑛)))
9897ralrimiv 3138 1 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3060  wrex 3069  cdif 3910  cun 3911  cin 3912  wss 3913  c0 4287  {csn 4591  cop 4597   class class class wbr 5110  Ord word 6321  suc csuc 6324  1-1-ontowf1o 6500  ωcom 7807  cen 8887  Fincfn 8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-om 7808  df-en 8891  df-fin 8894
This theorem is referenced by:  fineqvlem  9213  isinffi  9937  domtriomlem  10387  ishashinf  14374  ctbssinf  35950
  Copyright terms: Public domain W3C validator