MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinf Structured version   Visualization version   GIF version

Theorem isinf 9266
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5335. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
isinf 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf
Dummy variables 𝑚 𝑦 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . . . . 6 (𝑛 = ∅ → (𝑥𝑛𝑥 ≈ ∅))
21anbi2d 630 . . . . 5 (𝑛 = ∅ → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥 ≈ ∅)))
32exbidv 1921 . . . 4 (𝑛 = ∅ → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ ∅)))
4 breq2 5123 . . . . . 6 (𝑛 = 𝑚 → (𝑥𝑛𝑥𝑚))
54anbi2d 630 . . . . 5 (𝑛 = 𝑚 → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥𝑚)))
65exbidv 1921 . . . 4 (𝑛 = 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥𝑚)))
7 sseq1 3984 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
87adantl 481 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
9 breq1 5122 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑛𝑦𝑛))
10 breq2 5123 . . . . . . 7 (𝑛 = suc 𝑚 → (𝑦𝑛𝑦 ≈ suc 𝑚))
119, 10sylan9bbr 510 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝑛𝑦 ≈ suc 𝑚))
128, 11anbi12d 632 . . . . 5 ((𝑛 = suc 𝑚𝑥 = 𝑦) → ((𝑥𝐴𝑥𝑛) ↔ (𝑦𝐴𝑦 ≈ suc 𝑚)))
1312cbvexdvaw 2038 . . . 4 (𝑛 = suc 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
14 0ss 4375 . . . . . 6 ∅ ⊆ 𝐴
15 peano1 7882 . . . . . . 7 ∅ ∈ ω
16 enrefnn 9059 . . . . . . 7 (∅ ∈ ω → ∅ ≈ ∅)
1715, 16ax-mp 5 . . . . . 6 ∅ ≈ ∅
18 0ex 5277 . . . . . . 7 ∅ ∈ V
19 sseq1 3984 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
20 breq1 5122 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
2119, 20anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑥𝐴𝑥 ≈ ∅) ↔ (∅ ⊆ 𝐴 ∧ ∅ ≈ ∅)))
2218, 21spcev 3585 . . . . . 6 ((∅ ⊆ 𝐴 ∧ ∅ ≈ ∅) → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
2314, 17, 22mp2an 692 . . . . 5 𝑥(𝑥𝐴𝑥 ≈ ∅)
2423a1i 11 . . . 4 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
25 ssdif0 4341 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
26 eqss 3974 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
27 breq1 5122 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐴 → (𝑥𝑚𝐴𝑚))
2827biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐴𝑥𝑚) → 𝐴𝑚)
29 rspe 3232 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝐴𝑚) → ∃𝑚 ∈ ω 𝐴𝑚)
3028, 29sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → ∃𝑚 ∈ ω 𝐴𝑚)
31 isfi 8988 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
3230, 31sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → 𝐴 ∈ Fin)
3332expcom 413 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3426, 33sylanbr 582 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐴𝑥) ∧ 𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3534ex 412 . . . . . . . . . . . . 13 ((𝑥𝐴𝐴𝑥) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3625, 35sylan2br 595 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝐴𝑥) = ∅) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3736expcom 413 . . . . . . . . . . 11 ((𝐴𝑥) = ∅ → (𝑥𝐴 → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin))))
38373impd 1349 . . . . . . . . . 10 ((𝐴𝑥) = ∅ → ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → 𝐴 ∈ Fin))
3938com12 32 . . . . . . . . 9 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → ((𝐴𝑥) = ∅ → 𝐴 ∈ Fin))
4039con3d 152 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝑥) = ∅))
41 bren 8967 . . . . . . . . . 10 (𝑥𝑚 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑚)
42 neq0 4327 . . . . . . . . . . . . . 14 (¬ (𝐴𝑥) = ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴𝑥))
43 eldifi 4106 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴𝑥) → 𝑧𝐴)
4443snssd 4785 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝐴𝑥) → {𝑧} ⊆ 𝐴)
45 unss 4165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4645biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4744, 46sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴𝑧 ∈ (𝐴𝑥)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4847ad2ant2r 747 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
49 vex 3463 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
50 vex 3463 . . . . . . . . . . . . . . . . . . . . . . 23 𝑚 ∈ V
5149, 50f1osn 6857 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}
5251jctr 524 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑥1-1-onto𝑚 → (𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}))
53 eldifn 4107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐴𝑥) → ¬ 𝑧𝑥)
54 disjsn 4687 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑥)
5553, 54sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐴𝑥) → (𝑥 ∩ {𝑧}) = ∅)
56 nnord 7867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ω → Ord 𝑚)
57 orddisj 6390 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑚 → (𝑚 ∩ {𝑚}) = ∅)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
5955, 58anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅))
60 f1oun 6836 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}) ∧ ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
6152, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
62 df-suc 6358 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑚 = (𝑚 ∪ {𝑚})
63 f1oeq3 6807 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑚 = (𝑚 ∪ {𝑚}) → ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚})))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
65 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
66 snex 5406 . . . . . . . . . . . . . . . . . . . . . . . 24 {⟨𝑧, 𝑚⟩} ∈ V
6765, 66unex 7736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∪ {⟨𝑧, 𝑚⟩}) ∈ V
68 f1oeq1 6805 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑚⟩}) → (𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚))
6967, 68spcev 3585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
70 bren 8967 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∪ {𝑧}) ≈ suc 𝑚 ↔ ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
7169, 70sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7264, 71sylbir 235 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7361, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7473adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
75 vex 3463 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
76 snex 5406 . . . . . . . . . . . . . . . . . . . 20 {𝑧} ∈ V
7775, 76unex 7736 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∪ {𝑧}) ∈ V
78 sseq1 3984 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐴 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴))
79 breq1 5122 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ≈ suc 𝑚 ↔ (𝑥 ∪ {𝑧}) ≈ suc 𝑚))
8078, 79anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑦𝐴𝑦 ≈ suc 𝑚) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚)))
8177, 80spcev 3585 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8248, 74, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8382expcom 413 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
8483ex 412 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8584exlimiv 1930 . . . . . . . . . . . . . 14 (∃𝑧 𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8642, 85sylbi 217 . . . . . . . . . . . . 13 (¬ (𝐴𝑥) = ∅ → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8786com13 88 . . . . . . . . . . . 12 ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8887expcom 413 . . . . . . . . . . 11 (𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8988exlimiv 1930 . . . . . . . . . 10 (∃𝑓 𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
9041, 89sylbi 217 . . . . . . . . 9 (𝑥𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
91903imp21 1113 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
9240, 91syld 47 . . . . . . 7 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
93923expia 1121 . . . . . 6 ((𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9493exlimiv 1930 . . . . 5 (∃𝑥(𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9594com3l 89 . . . 4 (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → (∃𝑥(𝑥𝐴𝑥𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
963, 6, 13, 24, 95finds2 7892 . . 3 (𝑛 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥𝑛)))
9796com12 32 . 2 𝐴 ∈ Fin → (𝑛 ∈ ω → ∃𝑥(𝑥𝐴𝑥𝑛)))
9897ralrimiv 3131 1 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   class class class wbr 5119  Ord word 6351  suc csuc 6354  1-1-ontowf1o 6529  ωcom 7859  cen 8954  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-om 7860  df-en 8958  df-fin 8961
This theorem is referenced by:  fineqvlem  9268  isinffi  10004  domtriomlem  10454  ishashinf  14479  prcinf  35071  ctbssinf  37370
  Copyright terms: Public domain W3C validator