MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinf Structured version   Visualization version   GIF version

Theorem isinf 9144
Description: Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5301. (Revised by BTernaryTau, 2-Jan-2025.)
Assertion
Ref Expression
isinf 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Distinct variable group:   𝐴,𝑛,𝑥

Proof of Theorem isinf
Dummy variables 𝑚 𝑦 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5093 . . . . . 6 (𝑛 = ∅ → (𝑥𝑛𝑥 ≈ ∅))
21anbi2d 630 . . . . 5 (𝑛 = ∅ → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥 ≈ ∅)))
32exbidv 1922 . . . 4 (𝑛 = ∅ → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥 ≈ ∅)))
4 breq2 5093 . . . . . 6 (𝑛 = 𝑚 → (𝑥𝑛𝑥𝑚))
54anbi2d 630 . . . . 5 (𝑛 = 𝑚 → ((𝑥𝐴𝑥𝑛) ↔ (𝑥𝐴𝑥𝑚)))
65exbidv 1922 . . . 4 (𝑛 = 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑥(𝑥𝐴𝑥𝑚)))
7 sseq1 3958 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
87adantl 481 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
9 breq1 5092 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑛𝑦𝑛))
10 breq2 5093 . . . . . . 7 (𝑛 = suc 𝑚 → (𝑦𝑛𝑦 ≈ suc 𝑚))
119, 10sylan9bbr 510 . . . . . 6 ((𝑛 = suc 𝑚𝑥 = 𝑦) → (𝑥𝑛𝑦 ≈ suc 𝑚))
128, 11anbi12d 632 . . . . 5 ((𝑛 = suc 𝑚𝑥 = 𝑦) → ((𝑥𝐴𝑥𝑛) ↔ (𝑦𝐴𝑦 ≈ suc 𝑚)))
1312cbvexdvaw 2040 . . . 4 (𝑛 = suc 𝑚 → (∃𝑥(𝑥𝐴𝑥𝑛) ↔ ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
14 0ss 4348 . . . . . 6 ∅ ⊆ 𝐴
15 peano1 7814 . . . . . . 7 ∅ ∈ ω
16 enrefnn 8963 . . . . . . 7 (∅ ∈ ω → ∅ ≈ ∅)
1715, 16ax-mp 5 . . . . . 6 ∅ ≈ ∅
18 0ex 5243 . . . . . . 7 ∅ ∈ V
19 sseq1 3958 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
20 breq1 5092 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ≈ ∅ ↔ ∅ ≈ ∅))
2119, 20anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑥𝐴𝑥 ≈ ∅) ↔ (∅ ⊆ 𝐴 ∧ ∅ ≈ ∅)))
2218, 21spcev 3559 . . . . . 6 ((∅ ⊆ 𝐴 ∧ ∅ ≈ ∅) → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
2314, 17, 22mp2an 692 . . . . 5 𝑥(𝑥𝐴𝑥 ≈ ∅)
2423a1i 11 . . . 4 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ∅))
25 ssdif0 4314 . . . . . . . . . . . . 13 (𝐴𝑥 ↔ (𝐴𝑥) = ∅)
26 eqss 3948 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 ↔ (𝑥𝐴𝐴𝑥))
27 breq1 5092 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝐴 → (𝑥𝑚𝐴𝑚))
2827biimpa 476 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝐴𝑥𝑚) → 𝐴𝑚)
29 rspe 3220 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ω ∧ 𝐴𝑚) → ∃𝑚 ∈ ω 𝐴𝑚)
3028, 29sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → ∃𝑚 ∈ ω 𝐴𝑚)
31 isfi 8893 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
3230, 31sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ω ∧ (𝑥 = 𝐴𝑥𝑚)) → 𝐴 ∈ Fin)
3332expcom 413 . . . . . . . . . . . . . . 15 ((𝑥 = 𝐴𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3426, 33sylanbr 582 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐴𝑥) ∧ 𝑥𝑚) → (𝑚 ∈ ω → 𝐴 ∈ Fin))
3534ex 412 . . . . . . . . . . . . 13 ((𝑥𝐴𝐴𝑥) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3625, 35sylan2br 595 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ (𝐴𝑥) = ∅) → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin)))
3736expcom 413 . . . . . . . . . . 11 ((𝐴𝑥) = ∅ → (𝑥𝐴 → (𝑥𝑚 → (𝑚 ∈ ω → 𝐴 ∈ Fin))))
38373impd 1349 . . . . . . . . . 10 ((𝐴𝑥) = ∅ → ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → 𝐴 ∈ Fin))
3938com12 32 . . . . . . . . 9 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → ((𝐴𝑥) = ∅ → 𝐴 ∈ Fin))
4039con3d 152 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ¬ (𝐴𝑥) = ∅))
41 bren 8874 . . . . . . . . . 10 (𝑥𝑚 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑚)
42 neq0 4300 . . . . . . . . . . . . . 14 (¬ (𝐴𝑥) = ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴𝑥))
43 eldifi 4079 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴𝑥) → 𝑧𝐴)
4443snssd 4759 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝐴𝑥) → {𝑧} ⊆ 𝐴)
45 unss 4138 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4645biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴 ∧ {𝑧} ⊆ 𝐴) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4744, 46sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴𝑧 ∈ (𝐴𝑥)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
4847ad2ant2r 747 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ⊆ 𝐴)
49 vex 3438 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
50 vex 3438 . . . . . . . . . . . . . . . . . . . . . . 23 𝑚 ∈ V
5149, 50f1osn 6799 . . . . . . . . . . . . . . . . . . . . . 22 {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}
5251jctr 524 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑥1-1-onto𝑚 → (𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}))
53 eldifn 4080 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐴𝑥) → ¬ 𝑧𝑥)
54 disjsn 4662 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑥)
5553, 54sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐴𝑥) → (𝑥 ∩ {𝑧}) = ∅)
56 nnord 7799 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ω → Ord 𝑚)
57 orddisj 6340 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑚 → (𝑚 ∩ {𝑚}) = ∅)
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
5955, 58anim12i 613 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅))
60 f1oun 6778 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓:𝑥1-1-onto𝑚 ∧ {⟨𝑧, 𝑚⟩}:{𝑧}–1-1-onto→{𝑚}) ∧ ((𝑥 ∩ {𝑧}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
6152, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
62 df-suc 6308 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑚 = (𝑚 ∪ {𝑚})
63 f1oeq3 6749 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑚 = (𝑚 ∪ {𝑚}) → ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚})))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}))
65 vex 3438 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
66 snex 5372 . . . . . . . . . . . . . . . . . . . . . . . 24 {⟨𝑧, 𝑚⟩} ∈ V
6765, 66unex 7672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∪ {⟨𝑧, 𝑚⟩}) ∈ V
68 f1oeq1 6747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑚⟩}) → (𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 ↔ (𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚))
6967, 68spcev 3559 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
70 bren 8874 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∪ {𝑧}) ≈ suc 𝑚 ↔ ∃𝑔 𝑔:(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚)
7169, 70sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→suc 𝑚 → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7264, 71sylbir 235 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∪ {⟨𝑧, 𝑚⟩}):(𝑥 ∪ {𝑧})–1-1-onto→(𝑚 ∪ {𝑚}) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7361, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝑥1-1-onto𝑚 ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
7473adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → (𝑥 ∪ {𝑧}) ≈ suc 𝑚)
75 vex 3438 . . . . . . . . . . . . . . . . . . . 20 𝑥 ∈ V
76 snex 5372 . . . . . . . . . . . . . . . . . . . 20 {𝑧} ∈ V
7775, 76unex 7672 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∪ {𝑧}) ∈ V
78 sseq1 3958 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦𝐴 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐴))
79 breq1 5092 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 ∪ {𝑧}) → (𝑦 ≈ suc 𝑚 ↔ (𝑥 ∪ {𝑧}) ≈ suc 𝑚))
8078, 79anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 ∪ {𝑧}) → ((𝑦𝐴𝑦 ≈ suc 𝑚) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚)))
8177, 80spcev 3559 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∪ {𝑧}) ≈ suc 𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8248, 74, 81syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑓:𝑥1-1-onto𝑚) ∧ (𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω)) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))
8382expcom 413 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴𝑥) ∧ 𝑚 ∈ ω) → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
8483ex 412 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8584exlimiv 1931 . . . . . . . . . . . . . 14 (∃𝑧 𝑧 ∈ (𝐴𝑥) → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8642, 85sylbi 217 . . . . . . . . . . . . 13 (¬ (𝐴𝑥) = ∅ → (𝑚 ∈ ω → ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8786com13 88 . . . . . . . . . . . 12 ((𝑥𝐴𝑓:𝑥1-1-onto𝑚) → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
8887expcom 413 . . . . . . . . . . 11 (𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
8988exlimiv 1931 . . . . . . . . . 10 (∃𝑓 𝑓:𝑥1-1-onto𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
9041, 89sylbi 217 . . . . . . . . 9 (𝑥𝑚 → (𝑥𝐴 → (𝑚 ∈ ω → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))))
91903imp21 1113 . . . . . . . 8 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ (𝐴𝑥) = ∅ → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
9240, 91syld 47 . . . . . . 7 ((𝑥𝐴𝑥𝑚𝑚 ∈ ω) → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚)))
93923expia 1121 . . . . . 6 ((𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9493exlimiv 1931 . . . . 5 (∃𝑥(𝑥𝐴𝑥𝑚) → (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
9594com3l 89 . . . 4 (𝑚 ∈ ω → (¬ 𝐴 ∈ Fin → (∃𝑥(𝑥𝐴𝑥𝑚) → ∃𝑦(𝑦𝐴𝑦 ≈ suc 𝑚))))
963, 6, 13, 24, 95finds2 7823 . . 3 (𝑛 ∈ ω → (¬ 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥𝑛)))
9796com12 32 . 2 𝐴 ∈ Fin → (𝑛 ∈ ω → ∃𝑥(𝑥𝐴𝑥𝑛)))
9897ralrimiv 3121 1 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wral 3045  wrex 3054  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  {csn 4574  cop 4580   class class class wbr 5089  Ord word 6301  suc csuc 6304  1-1-ontowf1o 6476  ωcom 7791  cen 8861  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-om 7792  df-en 8865  df-fin 8868
This theorem is referenced by:  fineqvlem  9145  isinffi  9877  domtriomlem  10325  ishashinf  14362  prcinf  35104  ctbssinf  37419
  Copyright terms: Public domain W3C validator