MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviinvg Structured version   Visualization version   GIF version

Theorem cbviinvg 5066
Description: Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of the weaker cbviinv 5064 is preferred. (Contributed by Jeff Hankins, 26-Aug-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbviunvg.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviinvg 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbviinvg
StepHypRef Expression
1 nfcv 2908 . 2 𝑦𝐵
2 nfcv 2908 . 2 𝑥𝐶
3 cbviunvg.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbviing 5062 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-iin 5018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator