![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviinvg | Structured version Visualization version GIF version |
Description: Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of the weaker cbviinv 5064 is preferred. (Contributed by Jeff Hankins, 26-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbviunvg.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviinvg | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunvg.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviing 5062 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-iin 5018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |