| Metamath
Proof Explorer Theorem List (p. 51 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfiin2 5001* | Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
| Theorem | dfiunv2 5002* | Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} | ||
| Theorem | cbviun 5003* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) Add disjoint variable condition to avoid ax-13 2371. See cbviung 5005 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviin 5004* | Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2371. See cbviing 5006 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviung 5005* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2371. See cbviun 5003 for a version with more disjoint variable conditions, but not requiring ax-13 2371. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviing 5006* | Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2371. See cbviin 5004 for a version with more disjoint variable conditions, but not requiring ax-13 2371. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviunv 5007* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2371. See cbviunvg 5009 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviinv 5008* | Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) Add disjoint variable condition to avoid ax-13 2371. See cbviinvg 5010 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviunvg 5009* | Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2371. Usage of the weaker cbviunv 5007 is preferred. (Contributed by NM, 15-Sep-2003.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | cbviinvg 5010* | Change bound variables in an indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 2371. Usage of the weaker cbviinv 5008 is preferred. (Contributed by Jeff Hankins, 26-Aug-2009.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 | ||
| Theorem | iunssf 5011 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iunss 5012* | Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | ssiun 5013* | Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | ssiun2 5014 | Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | ssiun2s 5015* | Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
| ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | iunss2 5016* | A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4908. (Contributed by NM, 9-Dec-2004.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ 𝐵 𝐷) | ||
| Theorem | iunssd 5017* | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iunab 5018* | The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | ||
| Theorem | iunrab 5019* | The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} | ||
| Theorem | iunxdif2 5020* | Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
| ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | ssiinf 5021 | Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) | ||
| Theorem | ssiin 5022* | Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) | ||
| Theorem | iinss 5023* | Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
| Theorem | iinss2 5024 | An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | ||
| Theorem | uniiun 5025* | Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | ||
| Theorem | intiin 5026* | Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
| ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | ||
| Theorem | iunid 5027* | An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | ||
| Theorem | iunidOLD 5028* | Obsolete version of iunid 5027 as of 15-Jan-2025. (Contributed by NM, 6-Sep-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | ||
| Theorem | iun0 5029 | An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ | ||
| Theorem | 0iun 5030 | An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ | ||
| Theorem | 0iin 5031 | An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V | ||
| Theorem | viin 5032* | Indexed intersection with a universal index class. When 𝐴 doesn't depend on 𝑥, this evaluates to 𝐴 by 19.3 2203 and abid2 2866. When 𝐴 = 𝑥, this evaluates to ∅ by intiin 5026 and intv 5322. (Contributed by NM, 11-Sep-2008.) |
| ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} | ||
| Theorem | iunsn 5033* | Indexed union of a singleton. Compare dfiun2 5000 and rnmpt 5924. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 {𝐵} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} | ||
| Theorem | iunn0 5034* | There is a nonempty class in an indexed collection 𝐵(𝑥) iff the indexed union of them is nonempty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∪ 𝑥 ∈ 𝐴 𝐵 ≠ ∅) | ||
| Theorem | iinab 5035* | Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011.) |
| ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} | ||
| Theorem | iinrab 5036* | Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) | ||
| Theorem | iinrab2 5037* | Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.) |
| ⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} ∩ 𝐵) = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} | ||
| Theorem | iunin2 5038* | Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5025 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | iunin1 5039* | Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 5025 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵) | ||
| Theorem | iinun2 5040* | Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5026 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
| ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | iundif2 5041* | Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 5026 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | iindif1 5042* | Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) | ||
| Theorem | 2iunin 5043* | Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 (𝐶 ∩ 𝐷) = (∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷) | ||
| Theorem | iindif2 5044* | Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 5025 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | iinin2 5045* | Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5026 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | iinin1 5046* | Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 5026 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐶 ∩ 𝐵) = (∩ 𝑥 ∈ 𝐴 𝐶 ∩ 𝐵)) | ||
| Theorem | iinvdif 5047* | The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018.) |
| ⊢ ∩ 𝑥 ∈ 𝐴 (V ∖ 𝐵) = (V ∖ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | elriin 5048* | Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.) |
| ⊢ (𝐵 ∈ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) ↔ (𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆)) | ||
| Theorem | riin0 5049* | Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = 𝐴) | ||
| Theorem | riinn0 5050* | Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) | ||
| Theorem | riinrab 5051* | Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} | ||
| Theorem | symdif0 5052 | Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 △ ∅) = 𝐴 | ||
| Theorem | symdifv 5053 | The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 △ V) = (V ∖ 𝐴) | ||
| Theorem | symdifid 5054 | The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012.) |
| ⊢ (𝐴 △ 𝐴) = ∅ | ||
| Theorem | iinxsng 5055* | A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
| Theorem | iinxprg 5056* | Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.) |
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) | ||
| Theorem | iunxsng 5057* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
| Theorem | iunxsn 5058* | A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
| Theorem | iunxsngf 5059* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.) Avoid ax-13 2371. (Revised by GG, 19-May-2023.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
| Theorem | iunun 5060 | Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶) | ||
| Theorem | iunxun 5061 | Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) | ||
| Theorem | iunxdif3 5062* | An indexed union where some terms are the empty set. See iunxdif2 5020. (Contributed by Thierry Arnoux, 4-May-2020.) |
| ⊢ Ⅎ𝑥𝐸 ⇒ ⊢ (∀𝑥 ∈ 𝐸 𝐵 = ∅ → ∪ 𝑥 ∈ (𝐴 ∖ 𝐸)𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | iunxprg 5063* | A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
| ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∪ 𝐸)) | ||
| Theorem | iunxiun 5064* | Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ∪ 𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 | ||
| Theorem | iinuni 5065* | A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ (𝐴 ∪ ∩ 𝐵) = ∩ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) | ||
| Theorem | iununi 5066* | A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐴 ∪ ∪ 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥)) | ||
| Theorem | sspwuni 5067 | Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | ||
| Theorem | pwssb 5068* | Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | ||
| Theorem | elpwpw 5069 | Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | ||
| Theorem | pwpwab 5070* | The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} | ||
| Theorem | pwpwssunieq 5071* | The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ {𝑥 ∣ ∪ 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴 | ||
| Theorem | elpwuni 5072 | Relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) | ||
| Theorem | iinpw 5073* | The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
| ⊢ 𝒫 ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝒫 𝑥 | ||
| Theorem | iunpwss 5074* | Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) |
| ⊢ ∪ 𝑥 ∈ 𝐴 𝒫 𝑥 ⊆ 𝒫 ∪ 𝐴 | ||
| Theorem | intss2 5075 | A nonempty intersection of a family of subsets of a class is included in that class. (Contributed by BJ, 7-Dec-2021.) |
| ⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ 𝑋)) | ||
| Theorem | rintn0 5076 | Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| ⊢ ((𝑋 ⊆ 𝒫 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑋) = ∩ 𝑋) | ||
| Syntax | wdisj 5077 | Extend wff notation to include the statement that a family of classes 𝐵(𝑥), for 𝑥 ∈ 𝐴, is a disjoint family. |
| wff Disj 𝑥 ∈ 𝐴 𝐵 | ||
| Definition | df-disj 5078* | A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
| ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | ||
| Theorem | dfdisj2 5079* | Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) |
| ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | ||
| Theorem | disjss2 5080 | If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | ||
| Theorem | disjeq2 5081 | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | disjeq2dv 5082* | Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | disjss1 5083* | A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) | ||
| Theorem | disjeq1 5084* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
| Theorem | disjeq1d 5085* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | ||
| Theorem | disjeq12d 5086* | Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) | ||
| Theorem | cbvdisj 5087* | Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
| Theorem | cbvdisjv 5088* | Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) | ||
| Theorem | nfdisjw 5089* | Bound-variable hypothesis builder for disjoint collection. Version of nfdisj 5090 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | nfdisj 5090 | Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfdisjw 5089 when possible. (Contributed by Mario Carneiro, 14-Nov-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | nfdisj1 5091 | Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 | ||
| Theorem | disjor 5092* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) | ||
| Theorem | disjors 5093* | Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (⦋𝑖 / 𝑥⦌𝐵 ∩ ⦋𝑗 / 𝑥⦌𝐵) = ∅)) | ||
| Theorem | disji2 5094* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋 ≠ 𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → (𝐶 ∩ 𝐷) = ∅) | ||
| Theorem | disji 5095* | Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑋 = 𝑌. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) & ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) ⇒ ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ (𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷)) → 𝑋 = 𝑌) | ||
| Theorem | invdisj 5096* | If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝑥 → Disj 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | invdisjrab 5097* | The restricted class abstractions {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} for distinct 𝑦 ∈ 𝐴 are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.) |
| ⊢ Disj 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦} | ||
| Theorem | disjiun 5098* | A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| ⊢ ((Disj 𝑥 ∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵) = ∅) | ||
| Theorem | disjord 5099* | Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) ⇒ ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) | ||
| Theorem | disjiunb 5100* | Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
| ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) & ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) ⇒ ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |