MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviinv Structured version   Visualization version   GIF version

Theorem cbviinv 5022
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) Add disjoint variable condition to avoid ax-13 2377. See cbviinvg 5024 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbviunv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviinv 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbviinv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviunv.1 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
21eleq2d 2821 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
32cbvralvw 3224 . . 3 (∀𝑥𝐴 𝑧𝐵 ↔ ∀𝑦𝐴 𝑧𝐶)
43abbii 2803 . 2 {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∀𝑦𝐴 𝑧𝐶}
5 df-iin 4975 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
6 df-iin 4975 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∀𝑦𝐴 𝑧𝐶}
74, 5, 63eqtr4i 2769 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2714  wral 3052   ciin 4973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-iin 4975
This theorem is referenced by:  meaiininc  46483  iinhoiicc  46670  smflimlem3  46769  smflimlem4  46770  smflimlem6  46772  smfsuplem2  46808  smflimsuplem1  46816  smflimsup  46824
  Copyright terms: Public domain W3C validator