| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviinv | Structured version Visualization version GIF version | ||
| Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) Add disjoint variable condition to avoid ax-13 2371. See cbviinvg 5010 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviinv | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvralvw 3216 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2797 | . 2 ⊢ {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iin 4961 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iin 4961 | . 2 ⊢ ∩ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∀𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2763 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-iin 4961 |
| This theorem is referenced by: meaiininc 46492 iinhoiicc 46679 smflimlem3 46778 smflimlem4 46779 smflimlem6 46781 smfsuplem2 46817 smflimsuplem1 46825 smflimsup 46833 |
| Copyright terms: Public domain | W3C validator |