MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviunvg Structured version   Visualization version   GIF version

Theorem cbviunvg 4951
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2371. Usage of the weaker cbviunv 4949 is preferred. (Contributed by NM, 15-Sep-2003.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbviunvg.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviunvg 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbviunvg
StepHypRef Expression
1 nfcv 2904 . 2 𝑦𝐵
2 nfcv 2904 . 2 𝑥𝐶
3 cbviunvg.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbviung 4947 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543   ciun 4904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-iun 4906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator