Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviunvg | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2371. Usage of the weaker cbviunv 4949 is preferred. (Contributed by NM, 15-Sep-2003.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbviunvg.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunvg | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunvg.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviung 4947 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∪ ciun 4904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2371 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-iun 4906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |