![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrabv2 | Structured version Visualization version GIF version |
Description: A more general version of cbvrabv 3443. Usage of this theorem is discouraged because it depends on ax-13 2372. Use of cbvrabv2w 43817 is preferred. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrabv2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrabv2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv2.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvrabv2.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrabcsf 3942 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-13 2372 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |