Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvrabv2 Structured version   Visualization version   GIF version

Theorem cbvrabv2 42676
Description: A more general version of cbvrabv 3426. Usage of this theorem is discouraged because it depends on ax-13 2372. Use of cbvrabv2w 42677 is preferred. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvrabv2.1 (𝑥 = 𝑦𝐴 = 𝐵)
cbvrabv2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv2 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvrabv2
StepHypRef Expression
1 nfcv 2907 . 2 𝑦𝐴
2 nfcv 2907 . 2 𝑥𝐵
3 nfv 1917 . 2 𝑦𝜑
4 nfv 1917 . 2 𝑥𝜓
5 cbvrabv2.1 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvrabv2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
71, 2, 3, 4, 5, 6cbvrabcsf 3880 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-sbc 3717  df-csb 3833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator