Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvrabv2w Structured version   Visualization version   GIF version

Theorem cbvrabv2w 44271
Description: A more general version of cbvrabv 3434. Version of cbvrabv2 44270 with a disjoint variable condition, which does not require ax-13 2363. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by Gino Giotto, 16-Apr-2024.)
Hypotheses
Ref Expression
cbvrabv2w.1 (𝑥 = 𝑦𝐴 = 𝐵)
cbvrabv2w.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv2w {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvrabv2w
StepHypRef Expression
1 nfcv 2895 . 2 𝑦𝐴
2 nfcv 2895 . 2 𝑥𝐵
3 nfv 1909 . 2 𝑦𝜑
4 nfv 1909 . 2 𝑥𝜓
5 cbvrabv2w.1 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvrabv2w.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
71, 2, 3, 4, 5, 6cbvrabcsfw 3929 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  {crab 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886
This theorem is referenced by:  smfsuplem2  45979
  Copyright terms: Public domain W3C validator