![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrabv2w | Structured version Visualization version GIF version |
Description: A more general version of cbvrabv 3434. Version of cbvrabv2 44270 with a disjoint variable condition, which does not require ax-13 2363. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by Gino Giotto, 16-Apr-2024.) |
Ref | Expression |
---|---|
cbvrabv2w.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrabv2w.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv2w | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv2w.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvrabv2w.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrabcsfw 3929 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 {crab 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 |
This theorem is referenced by: smfsuplem2 45979 |
Copyright terms: Public domain | W3C validator |