Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvrabv2w Structured version   Visualization version   GIF version

Theorem cbvrabv2w 42630
Description: A more general version of cbvrabv 3424. Version of cbvrabv2 42629 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by Gino Giotto, 16-Apr-2024.)
Hypotheses
Ref Expression
cbvrabv2w.1 (𝑥 = 𝑦𝐴 = 𝐵)
cbvrabv2w.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv2w {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvrabv2w
StepHypRef Expression
1 nfcv 2908 . 2 𝑦𝐴
2 nfcv 2908 . 2 𝑥𝐵
3 nfv 1920 . 2 𝑦𝜑
4 nfv 1920 . 2 𝑥𝜓
5 cbvrabv2w.1 . 2 (𝑥 = 𝑦𝐴 = 𝐵)
6 cbvrabv2w.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
71, 2, 3, 4, 5, 6cbvrabcsfw 3880 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837
This theorem is referenced by:  smfsuplem2  44296
  Copyright terms: Public domain W3C validator