Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrabv2w | Structured version Visualization version GIF version |
Description: A more general version of cbvrabv 3424. Version of cbvrabv2 42629 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Revised by Gino Giotto, 16-Apr-2024.) |
Ref | Expression |
---|---|
cbvrabv2w.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrabv2w.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv2w | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1920 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1920 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv2w.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvrabv2w.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrabcsfw 3880 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 |
This theorem is referenced by: smfsuplem2 44296 |
Copyright terms: Public domain | W3C validator |