Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iniin2 Structured version   Visualization version   GIF version

Theorem iniin2 44364
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
iniin2 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iniin2
StepHypRef Expression
1 iinin2 5072 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
21eqcomd 2730 1 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wne 2932  cin 3940  c0 4315   ciin 4989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-v 3468  df-dif 3944  df-in 3948  df-nul 4316  df-iin 4991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator