Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iniin2 Structured version   Visualization version   GIF version

Theorem iniin2 45076
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
iniin2 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iniin2
StepHypRef Expression
1 iinin2 5060 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
21eqcomd 2740 1 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2931  cin 3932  c0 4315   ciin 4974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-v 3466  df-dif 3936  df-in 3940  df-nul 4316  df-iin 4976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator