Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iniin2 Structured version   Visualization version   GIF version

Theorem iniin2 42537
Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
iniin2 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iniin2
StepHypRef Expression
1 iinin2 5003 . 2 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
21eqcomd 2745 1 (𝐴 ≠ ∅ → (𝐵 𝑥𝐴 𝐶) = 𝑥𝐴 (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wne 2943  cin 3883  c0 4254   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-ral 3069  df-v 3425  df-dif 3887  df-in 3891  df-nul 4255  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator