| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iniin2 | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| iniin2 | ⊢ (𝐴 ≠ ∅ → (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinin2 5060 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
| 2 | 1 | eqcomd 2740 | 1 ⊢ (𝐴 ≠ ∅ → (𝐵 ∩ ∩ 𝑥 ∈ 𝐴 𝐶) = ∩ 𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2931 ∩ cin 3932 ∅c0 4315 ∩ ciin 4974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-v 3466 df-dif 3936 df-in 3940 df-nul 4316 df-iin 4976 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |