|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvral2 | Structured version Visualization version GIF version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 3368. (Contributed by Alexander van der Vekens, 2-Jul-2017.) | 
| Ref | Expression | 
|---|---|
| cbvral2.1 | ⊢ Ⅎ𝑧𝜑 | 
| cbvral2.2 | ⊢ Ⅎ𝑥𝜒 | 
| cbvral2.3 | ⊢ Ⅎ𝑤𝜒 | 
| cbvral2.4 | ⊢ Ⅎ𝑦𝜓 | 
| cbvral2.5 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | 
| cbvral2.6 | ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvral2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑧𝐵 | |
| 2 | cbvral2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 1, 2 | nfral 3374 | . . 3 ⊢ Ⅎ𝑧∀𝑦 ∈ 𝐵 𝜑 | 
| 4 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | cbvral2.2 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfral 3374 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐵 𝜒 | 
| 7 | cbvral2.5 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 8 | 7 | ralbidv 3178 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | 
| 9 | 3, 6, 8 | cbvralw 3306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) | 
| 10 | cbvral2.3 | . . . 4 ⊢ Ⅎ𝑤𝜒 | |
| 11 | cbvral2.4 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 12 | cbvral2.6 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) | |
| 13 | 10, 11, 12 | cbvralw 3306 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑤 ∈ 𝐵 𝜓) | 
| 14 | 13 | ralbii 3093 | . 2 ⊢ (∀𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | 
| 15 | 9, 14 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |